期刊文献+

基于Hadoop的协同过滤推荐并行化研究 被引量:1

Research on parallelization of collaborative filtering recommendation based on Hadoop
下载PDF
导出
摘要 针对协同过滤(CF)推荐技术处理大数据时的计算效率问题,分析了CF算法的并行化。并行化CF算法采用Hadoop平台的Map Reduce并行编程模型,改善大数据环境下CF算法在单机运行时的计算性能。在实验部分,设计不同集群环境下的加速比实验,验证该算法在大数据环境中具有的计算性能。 For the computational efficiency problem existing in big data processing with collaborative filtering(CF)recommendation, parallel computing of CF is analyzed. Parallelized CF algorithm uses Map Reduce parallel programming model on Hadoop platform, which improves the computational efficiency of single PC to process big data. In the experiment section, the speedup experiments in different cluster environments are designed to verify the better computing performance of the algorithm in big data processing.
作者 曹萍
出处 《计算机时代》 2016年第5期30-33,共4页 Computer Era
基金 江苏省审计信息工程重点实验室课题"基于qos的信息系统绩效审计试验方法研究"(AIE201206)
关键词 协同过滤 计算效率 加速比 HADOOP 大数据 collaborative filtering computational efficiency speedup Hadoop Big data
  • 相关文献

参考文献14

  • 1李树青.个性化信息检索技术综述[J].情报理论与实践,2009,32(5):107-113. 被引量:27
  • 2Liu Z B,Qu W Y,Li H T,et al. A Hybrid Collaborative Filtering Recommendation Mechanism for P2PNetworks[J]. Future Genera-tion Computer Systems, 2010,26(8):1409-1417.
  • 3Nature.Big Data[EB/OL].[2012-10-O2].http://www.nature. com/news/specials/bigdata/index.html.
  • 4Bryant R E,Katz R H,Lazowska E D.Big-Data computing Creating revolutionary breakthroughs in commerce science, and society[R]. [2012-10-02].http://www.cra org/ccc/docs/init/Big_Data.pdf.
  • 5Science.Special online collection:Dealing with data[EB/ OL]. [2012-10-02]. http://www.Sciencemag.org/sites/ special/data/, 2011.
  • 6Manyika J,Chui M,Brown B,et al.Big data:The next frontier for innovation,competition,and productivity[R/ OL].[2012-10-22].http://www.mckinsey.com/Insights/ MGl/Research/Technology and Innovation/Big_data_ The_next_frontier for innovation.
  • 7Big Data Across the Federal Government[EB/OL]. [2012-10-02].http://www.whitehouse.gov/sites/default/ files/microsites/ostp/big_data fact sheet_final_l.pdf.
  • 8肖强,朱庆华,郑华,吴克文.Hadoop环境下的分布式协同过滤算法设计与实现[J].现代图书情报技术,2013(1):83-89. 被引量:19
  • 9程苗,陈华平.基于Hadoop的Web日志挖掘[J].计算机工程,2011,37(11):37-39. 被引量:64
  • 10李改,潘嵘,李章凤,李磊.基于大数据集的协同过滤算法的并行化研究[J].计算机工程与设计,2012,33(6):2437-2441. 被引量:19

二级参考文献118

  • 1冯璐,冷伏海.共词分析方法理论进展[J].中国图书馆学报,2006,32(2):88-92. 被引量:567
  • 2王文平,刘希玉,韩杰.基于并行遗传算法的关联规则挖掘[J].山东师范大学学报(自然科学版),2006,21(4):29-31. 被引量:7
  • 3KHOPKAR Y, SPINK A, GILES C L, et al. Search engine personalization: an exploratory study [ EB/OL ]. http: // firstmonday, org/issues/issue8 7/khopkar/index. html.
  • 4KOBSA A. Privacy-enhanced Web personalization [ M ] // BRUSILOVSKY P, KOBSA A, NEJDL W. The adaptive Web: methods and strategies of web personalization. New York: Springer-Verlag, Berlin Heidelberg, 2007.
  • 5CHIRITA P A, FIRAN C, NEJDL W. Summarizing local context to personalize global Web search [ C ] // Proceedings of CIKM'06, 2006.
  • 6CHIRITA P A, BEIJDL W, PAIU R, et al. Using odp metadata to personalize search [ C ] // Proceedings of SIGIR '05, 2005.
  • 7TEEVAN J, DUMAIS S T, HORVITZ E. Beyond the commons: Investigating the value of personalizing Web search [C] //Proceedings of PIA'05, 2005.
  • 8DOU Z, SONG R. , WEN J R. A large-scale evaluation and analysis of personalized search strategies [ C ] //Proceedings of WWW '07, 2007.
  • 9LEE U, LIU Z, CHO J. Automatic identification of user goals in Web search [ C ] /! Proceedings of WWW'05, 2005.
  • 10ANICK P. Using terminological feedback for web search refinement : a log-based study [ C ] //Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, New York : NY, USA, ACM Press, 2003.

共引文献1047

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部