摘要
针对协同过滤(CF)推荐技术处理大数据时的计算效率问题,分析了CF算法的并行化。并行化CF算法采用Hadoop平台的Map Reduce并行编程模型,改善大数据环境下CF算法在单机运行时的计算性能。在实验部分,设计不同集群环境下的加速比实验,验证该算法在大数据环境中具有的计算性能。
For the computational efficiency problem existing in big data processing with collaborative filtering(CF)recommendation, parallel computing of CF is analyzed. Parallelized CF algorithm uses Map Reduce parallel programming model on Hadoop platform, which improves the computational efficiency of single PC to process big data. In the experiment section, the speedup experiments in different cluster environments are designed to verify the better computing performance of the algorithm in big data processing.
出处
《计算机时代》
2016年第5期30-33,共4页
Computer Era
基金
江苏省审计信息工程重点实验室课题"基于qos的信息系统绩效审计试验方法研究"(AIE201206)
关键词
协同过滤
计算效率
加速比
HADOOP
大数据
collaborative filtering
computational efficiency
speedup
Hadoop
Big data