期刊文献+

超临界水中310-ODS钢表面氧化膜形成机制和性能 被引量:1

Formation Mechanism and Properties of Oxide Film on 310-ODS Steel in Supercritical Water
下载PDF
导出
摘要 采用腐蚀增重方法研究310-ODS钢在600℃低溶氧的超临界水中的全面腐蚀敏感性,取样周期分别为100、300、600、1 000、1 500h,对试样表面氧化膜进行扫描电镜、能谱仪和X射线衍射仪分析.结果表明:310-ODS钢在浸泡早期(300h)已经在表面形成较为致密的氧化膜,腐蚀速率快速降低;氧化膜为双层结构,内层致密富Cr,外层多孔富Fe,随着浸泡时间的增加,内层变得均匀,外层变化不大.310-ODS钢在600℃超临界水中的氧化过程满足固态生长机制,晶界处的Y2O3改善了材料的耐腐蚀性能. The general corrosion susceptibility of 310-ODS steel was evaluated in 600℃supercritical deaerated water by weight gain.The sample periods were 100,300,600,1 000,and 1 500 h.The surface oxide film of 310-ODS steel was analyzed by using scanning electron microscope(SEM),energy disperse spectroscopy(EDS)and X-ray diffractometer(XRD).The results show that a dense oxide film is formed on the surface of 310-ODS steel during the early days(300h)and the corrosion rate decreases rapidly.The oxide film is a double-layer structure with a dense Cr-enriched inner layer and a porous Fe-enriched outer layer.The inner layer becomes uniform and the outer layer does not change with the immersing time.The oxidation process of 310-ODS steel in 600℃ supercritical deaerated water meets the solid-state growth mechanism and Y2O3 in the grain boundaries improves the corrosion resistance.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第4期528-533,共6页 Journal of Shanghai Jiaotong University
基金 国家重点基础研究发展规划(973)项目(2007CB209802)资助
关键词 310-ODS钢 超临界水 全面腐蚀 310-ODS steel supercritical water general corrosion
  • 相关文献

参考文献15

  • 1ZHANG L, BAO Y, TANG R. Selection and corro- sion evaluation tests of candidate SCWR fuel cladding materials[J]. Nuclear Engineering and Design, 2012, 249(8) : 180-187.
  • 2UKAI S, HARADA M, OKADA H, et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials[J]. Journal of Nu- clear Materials, 1993, 204(9): 65-73.
  • 3UKAI S, NISHIDA T, OKADA H, et aZ. Develop- ment of oxide dispersion strengthened ferritic steels for FBR core application, (I) improvement of mechan- ical properties by recrystallization processing [J]. Journal of Nuclear Science and Technology, 1997, 34 (3) .. 256-263.
  • 4MONNET I, DUBUISSON P, Microstructural investigation of radiation of oxide dispersion steels[J]. Journal of Nuclear (3) : 311-321. SERRUYS Y, et al. the stability under ir- strengthened ferritic Materials, 2004, 335.
  • 5邹雷,周张健,孙红英,张广明,张丽伟.ODS-310合金的高温氧化行为[J].北京科技大学学报,2014,36(9):1195-1200. 被引量:1
  • 6WAS G S, AMPORNRAT P, GUPTA G, et al. Corrosion and stress corrosion cracking in supercriti- cal water[J]. Journal of Nuclear Materials, 2007, 371 (1) .. 176-201.
  • 7WAS G S, TEYSSEYRE S, JIAO Z. Corrosion of austenitic alloys in supercritical water[J]. Corrosion, 2006, 62(11): 989-1005.
  • 8BOYD W K, PRAY H A. Corrosion of stainless steels in supercritical water[J]. Corrosion, 1957,13 (6) : 33-42.
  • 9ROBERTSON J. The mechanism of high temperature aqueous corrosion of steel [J]. Corrosion Science, 1989, 29(11): 1275-1291.
  • 10SUN M, WU X, ZHANG Z, et al. Analyses of ox- ide films grown on alloy 625 in oxidizing supercritical water[J]. The Journal of Supercritical Fluids, 2008, 47(2) : 309-317.

二级参考文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部