期刊文献+

基于萤火虫算法的无线传感器网络移动sink节点路径规划方法 被引量:9

Path Planning in Wireless Sensor Networks for Mobile Sink Based on Glowworm Swarm Optimization Algorithm
下载PDF
导出
摘要 为了解决通信范围建模为圆形区域且存在相互重叠的无线传感器网络中移动sink路径规划这一NP难问题,提出了一种新的基于萤火虫群的路径规划方法.首先依据问题的特性对可行解空间进行了压缩;然后为提高算法在高维解空间的搜索效率,对离群萤火虫粒子设计了变异操作并设计了个体逐维移动的方式,提高了算法的求解精度并加快了算法的收敛速度.通过仿真实验分析及与其他算法的对比,验证了该方法的有效性. Mobile-sink shortest path planning problem can be regarded as a special case of TSPN problem, since the neighborhoods are the communication ranges of sensor nodes, which can be modeled as possibly overlapped disks. This problem is NP-Hard. To solve it, a novel glowworm swarm optimization based algorithm is proposed. At first, a search space reduction method is designed for compressing search space and improving efficiency of problem solving according to the nature of the problen~ Then, a mutation operator for the outliers of the glowworms and an improved moving method are applied to improve the convergence speed and the quality of the result. The simulation results show that the proposed algorithm can achieve a better result than the related algorithms.
出处 《微电子学与计算机》 CSCD 北大核心 2016年第5期47-51,共5页 Microelectronics & Computer
基金 国家科技重大专项(2014ZX03002001) 国家自然科学基金项目(61363070 61163058 61172053) 广西自然科学基金(2014GXNSFAA118370) 广西自动检测技术与仪器重点实验室基金资助项目(YQ14204) 广西教育厅基金资助项目(YB2014148) 广西高校云计算与复杂系统重点实验室资助项目(2015209)
关键词 无线传感器网络 移动SINK TSPN 萤火虫优化算法 进化算法 wireless sensor networks mobile sink TSPN glowworm swarm optimization(GSO) algorithm evolutionary algorithm
  • 相关文献

参考文献13

  • 1Wu F J, Yu Chee Tseng. Energy conserving data gath- ering by mobile mules in a spatially separated wireless sensor network[J]. Wireless Communications and Mo- bile Computing, 2013,13(15) : 1369-1385.
  • 2Mario Di Francesco, Sajal K Das, Giuseppe Anastasi. Data collection in wireless sensor ntworks with mile eements: a srvey[J]. ACM Trans on Sensor Net- works, 2011,8(1) : 108-142.
  • 3Ma Ming, Yang Yuanyuan, Zhao Miao. Tour plan- ning for mobile data-gathering mechanisms in wireless sensor networks[J]. IEEE Trans on Vehicular Tech- nology, 2013,62 (4) : 1472-1483.
  • 4De Berg M, Gudmundsson J, Katz M. J, et al. TSP with neighborhoods of varying size[J]. Journal of Al- gorithms, 2005, 57(1) :22-36.
  • 5Sugihara R, Rajesh K Gupta. Path planning of data mules in sensor networks[J]. ACM Transactions on Sensor Networks, 2011,8(1) : 1-27.
  • 6He Liang, Pan Jianping, Xu Jingdong. A progressive approach to reducing data collection latency in wireless sensor ntworks with mbile eements[J]. IEEE Trans on Mobile Computing, 2013, 12(7):1308-1320.
  • 7Yung Liang Lai,Jehn Ruey Jiang. A genetic algorithm for data mule path planning in wireless sensor net- works[J]. Appl Math Inf Sei, 2013,7(1).413-419.
  • 8Krishnanand K N, Ghose D. A glowworm swarm op- timization based multi-robot sytem for signal source lo- ealization[J]. Design and Control of Intel. Robotic Sys- tems, 2009,177(7) : 49-68.
  • 9周永权,黄正新,刘洪霞.求解TSP问题的离散型萤火虫群优化算法[J].电子学报,2012,40(6):1164-1170. 被引量:80
  • 10Cook W. Concorde TSP solver [EB/OL]. (2014-06- 02). [2015-07-19]. http://www, math. uwaterloo, ca/ tsp/concorde, html.

二级参考文献41

  • 1Krishnanand K N, Ghose D. Detection of multiple source locations using a glowworm metaphor with applications to collective robotics [C] ff IEEE Swarm Intelligence Symposium. Pasadena, California: IEEE Press, 2005 : 84-91.
  • 2Krishnanand K N,Ghose D. Theoretical foundations for rendezvous of glowworm-inspired agent swarms at multiple locations [J]. Robotics and Autonomous Systems, 2008,56 ( 7 ): 549-569.
  • 3Krishnanand K N, Ghose D. Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions[J]. Swarm Intelligence, 2009,3 (2) : 87-124.
  • 4Krishnanand K N, Ghose D. Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications[J]. Multi-agent and Grid Systems, 2006,2 (3) : 209- 222.
  • 5Kaipa K N, Puttappa A, et al. Rendezvous of glowworm inspired robot swarms at multiple source locations: A sound source based real-robot implementation[C]//Lecture Notes in Computer Science. 2006,4150:259-269.
  • 6Bharat T V. Agents based algorithms for design parameter estimation in contaminant transport inverse problems [C]//2008 IEEE Swarm Intelligence Symposium (SIS 2008). St. Louis, MO, United States, 2008:1-7.
  • 7He D, Zhu H. Glowworm swarm optimization algorithm based on multi-population [C]//Proceedings-2010 6th International Conference on Natural Computation(ICNC 2010). Yantai, Shandong, China, IEEE Computer Society, 2010: 2624-2627.
  • 8Karaboga D, Akay B. A comparative study of artificial bee colony algorithm [J]. Applied Mathematics and Computation, 2009, 214:108-132.
  • 9Yong-Hyun Cho.An efficient solving the travelling salesman problem:Global optimization of neural networks by using hybrid method .Traveling Salesman Problem,Theory and Applications .Switzerland:Intech Press,2010.155-176.
  • 10Hirotaka Itoh.The method of solving for travelling salesman problem using genetic algorithm with immune adjustment mechanism .Traveling Salesman Problem,Theory and Applications .Switzerland:Intech Press,2010.97-112.

共引文献91

同被引文献57

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部