摘要
为了解决通信范围建模为圆形区域且存在相互重叠的无线传感器网络中移动sink路径规划这一NP难问题,提出了一种新的基于萤火虫群的路径规划方法.首先依据问题的特性对可行解空间进行了压缩;然后为提高算法在高维解空间的搜索效率,对离群萤火虫粒子设计了变异操作并设计了个体逐维移动的方式,提高了算法的求解精度并加快了算法的收敛速度.通过仿真实验分析及与其他算法的对比,验证了该方法的有效性.
Mobile-sink shortest path planning problem can be regarded as a special case of TSPN problem, since the neighborhoods are the communication ranges of sensor nodes, which can be modeled as possibly overlapped disks. This problem is NP-Hard. To solve it, a novel glowworm swarm optimization based algorithm is proposed. At first, a search space reduction method is designed for compressing search space and improving efficiency of problem solving according to the nature of the problen~ Then, a mutation operator for the outliers of the glowworms and an improved moving method are applied to improve the convergence speed and the quality of the result. The simulation results show that the proposed algorithm can achieve a better result than the related algorithms.
出处
《微电子学与计算机》
CSCD
北大核心
2016年第5期47-51,共5页
Microelectronics & Computer
基金
国家科技重大专项(2014ZX03002001)
国家自然科学基金项目(61363070
61163058
61172053)
广西自然科学基金(2014GXNSFAA118370)
广西自动检测技术与仪器重点实验室基金资助项目(YQ14204)
广西教育厅基金资助项目(YB2014148)
广西高校云计算与复杂系统重点实验室资助项目(2015209)
关键词
无线传感器网络
移动SINK
TSPN
萤火虫优化算法
进化算法
wireless sensor networks
mobile sink
TSPN
glowworm swarm optimization(GSO) algorithm
evolutionary algorithm