期刊文献+

冷凝器蒸发冷却对制冷机组性能影响的实验研究 被引量:5

Experimental Research on the Influence of Evaporative Cooling on Chiller Performance
原文传递
导出
摘要 蒸发冷却可以利用潜热降低冷凝器进风温度,因而在制冷机组节能等领域具有重要应用价值。本文针对三峡地下水电站的空冷制冷机组,在冷凝器进风进行蒸发冷却的条件下,实验测量了机组运行的各种性能参数,分析了机组的运行规律,研究了不同环境温度和湿度条件下蒸发冷却对机组性能的影响。实验结果表明冷凝器进风采用蒸发冷却可以明显提高机组的性能:在高温低湿环境下,对冷凝器进风进行蒸发冷却,机组总功率减小,效率提高。并且,当环境空气的干球温度逐渐升高,相对湿度逐渐降低时,冷凝器进风蒸发冷却的节能效果更加明显。 Evaporative cooling is significant for energy conservation of chillers,because the latent heat during water evaporation benefits the decrease of condensation pressure and temperature in condenser.This paper studied the influences of evaporative cooling on an air cooling chiller installed in the underground hydroelectric power plant of the Three Gorges.We measured the working parameters of the chiller with the evaporative cooling of the condenser inlet air,and further analyzed the chiller performance with different ambient temperatures and humilities.Experimental results showed that the evaporative cooling process of condenser inlet air benefits the improvement of the chiller performance,where it contributes to the reduction of the total power consumption in condition of higher temperature and lower humidity.Meanwhile,increasing the environment temperature and decreasing the humidity further improve the chiller performance with the evaporative cooling process of condenser inlet air.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2016年第5期1061-1065,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金(No.51422603)
关键词 制冷机组 节能 蒸发冷却 性能系数 refrigeration system energy conservation evaporative cooling coefficient of performance
  • 相关文献

参考文献11

  • 1Kim M H, Jeong J W. Cooling Performance of a 100% Outdoor Air System Integrated With Indirect and Direct Evaporative Coolers [J]. Energy, 2013, 52(1): 245-257.
  • 2Jiang Y, Xie X Y. Theoretical and Testing Performance of an Innovative Indirect Evaporative Chiller [J]. Solar En- ergy, 2010, 84(12): 2041- 2055.
  • 3F~mo N, Goswami D Y. Study of an Aqueous Lithium Chloride Desiccant System Desiccant Regeneration [J] Air Dehumidification and Solar Energy, 2002, 72(4):351- 361.
  • 4Luo Y M, Shao S Q, Xu H B, et al. Dehumidification Performance of [EMIM] BF4 [J]. Applied Thermal Engi- neering, 2011, 31(14/15): 2772-2777.
  • 5Gandhidasan P. A Simplified Model for Air Dehumidifi- cation With Liquid Desiccant [J]. Solar Energy, 2004, 76 (4): 409 -416.
  • 6Muangnoi T, Asvapoositkul W, Wongwises S. Effects of Inlet Relative Humidity and Inlet Temperature on the Performance of Counterfiow Wet Cooling Tower Based on Exergy Analysis [J]. Energy Conversion and Management, 2008, 49:2795-2800.
  • 7Sureshkumar R, S R Kale, P L Dhar. Heat and Mass Transfer Processes Between a Water Spray and Ambi- ent Air-II. Simulations [J]. Applied Thermal Engineering, 2008, 28(10): 361- 371.
  • 8Costelloe B, Finn D. Indirect Evaporative Cooling Po- tential in Air-Water Systems in Temperate Climates [J]. Energy and Buildings, 2003, 35(6): 573-591.
  • 9Costelloe B, Finn D. Thermal Effectiveness Characteris- tics of Low Approach Indirect Evaporative Cooling Sys- tems in Buildings [J]. Energy and Buildings, 2007, 39(12): 1235 -1243.
  • 10Zhan C H, Duan Z Y, Zhao X D, et al. Comparative Study of the Performance of the M-Cycle Counter-Flow and Cross-Flow Heat Exchangers for Indirect Evaporative Cooling-Paving the Path Toward Sustainable Cooling of Buildings [J]. Energy, 2011, 36(12): 6790- 6805.

同被引文献32

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部