期刊文献+

TA2钛合金真空脉冲气体氮化层的性能 被引量:2

Performance of Gas-Nitriding Surface Layer on TA2 Alloy by Vacuum Pulse Method
下载PDF
导出
摘要 为了进一步提高钛合金表面改性层的质量,采用真空脉冲气体氮化法在不同温度下对工业纯钛TA2进行氮化处理。利用金相显微镜、扫描电镜、X射线衍射仪、硬度仪、摩擦磨损试验及极化曲线分析了氮化层的组织结构、耐磨性能、耐腐蚀性能和表面硬度梯度等,研究了氮化温度对氮化层性能的影响。结果表明:TA2钛合金经过不同温度氮化处理后,其表面主要形成Ti N_(0.3)相;氮化层厚度和表面硬度都随温度的升高而增加,当温度升高到900℃时,氮化层厚度达60μm,表面硬度达750 HV,耐磨性及耐蚀性较基材大幅提高,磨损速率由基材的0.277 8 mg/(h·cm^2)减小至0.000 4 mg/(h·cm^2),腐蚀速率降低了2个数量级;800~900℃温度范围内,氮化温度对氮化层的耐腐蚀性能影响不大,但是温度的升高使得表面组织变得粗大,同时脆性有所增加。 In order to improve the quality of surface layer on titanium alloy,TA2 was treated by low pressure vacuum pulsed gas-nitriding method,and the surface phase evolution was characterized through XRD and SEM.Results showed that a novel phase of TiN_(0.3) emerged on the surface of TA2.Besides,the thickness and surface microhardness of the new surface layer were increased with the elevating nitriding temperature.When the temperature reached 900℃,the thickness of the new nitride layer was around 60 μm and the hardness achieved 750 HV.Also,the wear resistance and corrosion resistance were improved much more than those of the untreated samples.The wear rate was decreased to 0.000 4 mg/(h · cm^2) from0.277 8 mg/(h · cm^2) of the untreated sample and the corrosion rate was decreased by two orders of magnitude.At 800 ~ 900℃,the nitriding temperature did not influence the corrosion resistance of the nitride layers much,however,the increase of temperature enlarged the surface structure and increased the brittleness in a certain degree.
出处 《材料保护》 CAS CSCD 北大核心 2016年第4期19-22,6,共4页 Materials Protection
基金 国家自然科学基金(51574096) 贵州省科学技术基金(黔科合LH字[2014]7047号) 贵州省科技计划(黔科合JZ字[2014]2003号) 贵州师范大学研究生创新基金(研创2014(13))资助
关键词 TA2钛合金 真空脉冲氮化 氮化层 耐磨性 耐蚀性 TA2 vacuum pulse nitriding nitride layer wear resistance corrosion resistance
  • 相关文献

参考文献20

  • 1王向东,逯福生,贾翃,郝斌.2013年中国钛工业发展报告[J].钛工业进展,2014,31(3):1-6. 被引量:10
  • 2严伟,王小祥.热氧化处理钛表面渗氧层的组织与性能研究[J].稀有金属材料与工程,2005,34(3):471-474. 被引量:22
  • 3姜海涛,邵忠财,魏守强.钛合金表面处理技术的研究进展[J].电镀与精饰,2010,32(10):15-20. 被引量:28
  • 4Zhecheva A, Malinov S, Sha W. Simulation of microhardness profiles of titanium alloys after surface nitriding using artifi- cial neural network [ J ]. Surface and Coatings Technology, 2005,200(7) : 2 332-2 342.
  • 5Zhecheva A, Malinov S, Sha W. Titanium alloys after surface gas nitriding [ J ]. Surface and Coatings Technology, 2006, 201(6) : 2 467 -2 474.
  • 6Sha W, Muhd A, Ha F, et al. Gas nitriding of titanium alloy Timetal [ J ]. Surface and Coatings Technology, 2008,202 (24) :5 832 -5 837.
  • 7Sha W, Haji M A, Don M, et al. X - ray diffraction, optical microscopy, and microhardness studies of gas nitrided titani- um alloys and titanium aluminize [ J ]. Materials Character- ization ,2008,59 ( 3 ) : 229 - 240.
  • 8Tokaji K,Ogawa T, Shibata H. The Effects of Gas Nitriding on Fatigue Behavior in Titanium and Titanium Alloys [J].Journal of Materials Engineering and Performance, 1999, 8(2) :159 - 167.
  • 9Lee D B, Kim M J, Chen L, et al. Oxidation of Nitride Lay- ers Formed on Ti -6A1- 4V Alloys by Gas Nitriding [ J ]. Metal Materials Internation,2011,17 ( 3 ) :471 ~ 477.
  • 10Lee D B, Pohrelyuk I, Yaskiv O, et al. Gas nitriding and subsequent oxidation of Ti - 6A1 - 4V alloys [ J ]. Nanoseale Research Letters ,2012,21 (7) : 1 ~ 5.

二级参考文献99

共引文献107

同被引文献19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部