摘要
针对四轮独立转向四轮独立驱动电动汽车的操纵稳定性问题,提出了一种基于主动后轮转向(ARS)和直接横摆力矩控制(DYC)的集成控制策略.采用变传动比参考模型,通过基于滑模变结构设计的ARS控制器和非线性DYC控制器,对轮胎线性区域内的控制不足进行弥补,提升车辆非线性范围的操纵性能.对双移线工况进行了测试.结果表明:集成控制器优于ARS控制器和DYC控制器,能够有效提升车辆操纵稳定性以及降低横摆力矩需求,提高了车辆的纵向稳定裕度,集成控制是有效的.
To improve the stability of four-wheel-independent-drive( 4WID) and four-wheelindependent-steering( 4WIS) electric vehicles,a novel integrated control strategy was proposed to combine active rear-wheel steering( ARS) with direct yaw-moment control( DYC). The advantage of horizontal control margin was used to decrease longitudinal control. To maintain the desired steering characteristics using control system,the variable steering ratio reference model was adopted. ARS controller and nonlinear DYC controller with sliding mode variable structure were adopted to compensate the inadequate control within the linear range of tire and improve the handling performance within the nonlinear range of tire. A real vehicle test was conducted based on double lane-change test. The results show that the integrated controller is superior to both ARS and DYC controllers to improve the handling stability of vehicles and reduce the need of yaw moment. The integrated controller can enhance the vehicle longitudinal stability margin and is effective.
出处
《江苏大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2016年第3期268-276,共9页
Journal of Jiangsu University:Natural Science Edition
基金
国家自然科学基金资助项目(51175050)
广东省自然科学基金资助项目(S2011010002534)
深圳市技术创新研究课题资助项目(JCYJ20140718171525577
JCYJ20140508155916423
JCYJ20150630114140646)
关键词
电动汽车
集成控制
滑模控制
ARS
DYC
electric vehicle
integrated control
sliding mode control
ARS
DYC