期刊文献+

一类具有非线性发生率的时滞传染病模型Hopf分支 被引量:1

Hopf Bifurcation of a Delayed Epidemic Model with Nonlinear Incidence Rate
下载PDF
导出
摘要 以恢复个体临时免疫期时滞为分支参数,研究了一类具有阶段结构和非线性发生率的时滞SIRS传染病模型的局部Hopf分支.首先计算得到模型的有病毒平衡点,然后通过分析模型相应特征方程根的分布,得到模型有病毒平衡点局部渐近稳定和产生Hopf分支的时滞临界点τ_0.研究表明,当时滞的值低于临界点τ_0时,有病毒平衡点是局部渐近稳定的.而一旦时滞的值超越临界点,模型的有病毒平衡点将失去稳定性并在有病毒平衡点附近产生一簇分支周期解.最后,利用仿真示例对理论分析结果的正确性进行了验证. Local Hopf bifurcation of a delayed epidemic model with nonlinear incidence rate and stagestructure is studied in this paper.The viral equilibrium of the model is obtained and then the critical value of the delay for local stability of the viral equilibrium and existence of local Hopf bifurcation is also obtained by analyzing distribution of roots of the corresponding characteristic equation.It is proved that the viral equilibrium is locally asymptotically stable when the value of the delay is below and it will lose its stability and generate a cluster of branching periodic solutions near a viral equilibrium point when the value of the delay is above.Finally,a numerical example is presented to testify the validity of theoretical results.
出处 《菏泽学院学报》 2016年第2期8-12,17,共6页 Journal of Heze University
基金 2015年度安徽省高等学校省级自然科学研究项目(KJ2015A144)
关键词 SIRS模型 阶段结构 时滞 HOPF分支 SIRS model stage-structure delay Hopf bifurcation
  • 相关文献

参考文献9

  • 1Wang J. J, Zhang J. Z, Jin Z, Analysis of an SIR model with bilinear incidence rate [J]. Nonlinear Analysis: Real World Applications, 2010, 11 (4): 2390-2402.
  • 2Zhang T. L, Liu J. L, Teng Z.D. Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure [J]. Nonlinear Analysis: Real World Applications, 2010, 11(1): 293-306.
  • 3Wan H, Cui J. A. Rich dynamics of an epidemic model with saturation recovery [J]. Journal of Applied Mathematics, 2013(9) ,2013.
  • 4Wang L. W, Yang X. F. Global stability of a delayed SIRS model with temporary immunity [J]. Chaos Solitons ~ Frac- tals, 2008, 38(1):221-226.
  • 5Song M, Ma W. B. Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time delay [J]. Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, 2006, 13 (2) : 199-208.
  • 6Ruan S. G, Wang W. D. Dynamical behavior of an epidemic model with a nonliear incidence rate [J]. Journal of Differenti al Equations, 2003, 188(1):135-163.
  • 7Yoichi E, Eleonora M, Yoshiaki M, et al. Stability analysis of delayed SIR epidemic models with a class of nonlinear inci dence rates [J]. Applied Mathematics and Computation, 2012, 218(9):5327-5336.
  • 8陈方方,洪灵.一类具有时滞和非线性发生率的SIRS传染病模型稳定性与Hopf分岔分析[J].动力学与控制学报,2014,12(1):79-85. 被引量:9
  • 9Hassard B. D, Kazarinoff N. D, Wan Y. H. Theory and Applications of Hop{ Bifurcation [M]. Cambridge University Press, Cambridge, 1981.

二级参考文献2

共引文献8

同被引文献8

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部