摘要
弹性动力学问题(空间二维,时间一维),如果采用简单形式的三维延拓Kantorovich法,会遇到迭代不收敛的数值困难。采用张量积形式的三维延拓Kantorovich法,取试函数逼近形式为,实现了迭代收敛,解决了这个数值困难。弹性薄膜强迫振动的数值算例显示了迭代过程的收敛性。
If the simple form of three-dimensional continuation Kantorovich method is adopted to solve elastic dynamics problem(one-dimensional time, two-dimensional space), there may be numerical difficulties of iterative non-convergence. This paper uses three-dimensional continuation Kantorovich method in form of tensor product, takes the trial function approximation form as u(x,y,t)={X(x)}'[T(t)]{Y(y)}, realizes the iterative convergence and solves the numerical difficulties. The numerical example of elastic membrane forced vibration shows that the convergence of the iterative process.
出处
《现代工业经济和信息化》
2016年第6期110-112,共3页
Modern Industrial Economy and Informationization
基金
浙江省教育厅科研项目(Y201225911)
温州市科技局科研项目(S20110002)