期刊文献+

张量积形式的三维延拓Kantorovich法求解弹性动力学问题 被引量:1

Three-dimensional Continuation Kantorovich Method in Form of Tensor Product to Solve Elastic Dynamics Problems
下载PDF
导出
摘要 弹性动力学问题(空间二维,时间一维),如果采用简单形式的三维延拓Kantorovich法,会遇到迭代不收敛的数值困难。采用张量积形式的三维延拓Kantorovich法,取试函数逼近形式为,实现了迭代收敛,解决了这个数值困难。弹性薄膜强迫振动的数值算例显示了迭代过程的收敛性。 If the simple form of three-dimensional continuation Kantorovich method is adopted to solve elastic dynamics problem(one-dimensional time, two-dimensional space), there may be numerical difficulties of iterative non-convergence. This paper uses three-dimensional continuation Kantorovich method in form of tensor product, takes the trial function approximation form as u(x,y,t)={X(x)}'[T(t)]{Y(y)}, realizes the iterative convergence and solves the numerical difficulties. The numerical example of elastic membrane forced vibration shows that the convergence of the iterative process.
作者 林永静
出处 《现代工业经济和信息化》 2016年第6期110-112,共3页 Modern Industrial Economy and Informationization
基金 浙江省教育厅科研项目(Y201225911) 温州市科技局科研项目(S20110002)
关键词 遗弹性动力学问题 三维延拓Kantorovich法 张量积形式 弹性薄膜强迫振动 elastic dynamics problems three-dimensional continuation Kantorovich method tensor product form elastic membrane forced vibration
  • 相关文献

参考文献9

  • 1Kantorovich L V and Krylov V L Approximate Methods of Higher Analysis [M]. New York:Interscience, 1958.
  • 2D. Kerr. An extension of the Kantorovich method [J]. Quarterly of Applied Mathematics, 1968, 26: 219-229.
  • 3D. Kerr and H. Alexander. An application of the extended Kantorovich method to the stress analysis of a clamped rectangular plate [J]. Acta Mechanica, 1968, 6c 180-196.
  • 4J. P. H. Webber. On the extension of theKantorovich method [J]. The Aeronau6cal Journal, 1970, 74: 146-149.
  • 5Ascher U., Christiansen J. and Russell R. D. Collocation software for Boundary-Value ODEs [J]. ACM Transactions on Mathematical Software, 1981, 7(2): 209-222.
  • 6袁驷.介绍一个常微分方程边值问题求解通用程序——COLSYS[J].计算结构力学及其应用,1990,7(2):104-105. 被引量:70
  • 7S. Yuan and Y. Zhang, Further extension of the extended Kantorovich method [J]. Computational Methods in Engineering Advanc~es and Applications, ed. A. A. O. Tay and K. Y. I~n~ World Scientific, Singapore, 1992, 2: 1240-1245.
  • 8S. Yuan and Y. Jirr Computation of elastic buckling loads of rectangular thin plates using the extended Kantorovich method [J]. Computers and Structures, 199$, 66(6~ g61-$67.
  • 9Yuar~ Y. Jin and F. W. William~ Bending analysis of Mindlin plates by the extended Kantorovich method Journal of Engineering Mechanics, ASCE, 1998, 12: 1339-1345.

共引文献69

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部