期刊文献+

转矩力作用下不同颈部构型对微种植体稳定性的影响 被引量:2

Influence of Neck Design on Mini-implant Primary Stability after Loading with Torque Force
下载PDF
导出
摘要 【目的】通过三维有限元方法探讨转矩力作用下新型微种植体不同颈部构型对初期稳定性的影响。【方法】建立新型微种植体及周围骨组织三维有限元模型,加载6 N·mm转矩力。设定微种植体颈部增粗部位的参数变化范围为:高度H0~2.0 mm,直径D 1.3~1.6 mm,和锥度T 0~60°。每次固定两个变量,研究在转矩力作用下另一个变量变化时微种植体的周围皮质骨、松质骨等效应力峰值(Max EQV)及微种植体位移峰值(Max DM)的变化。【结果】随着颈部H的增大,皮质骨Max EQV和微种植体Max DM逐渐减小,但是超过皮质骨厚度后,减小幅度较小;随着D逐渐增大,皮质骨Max EQV和微种植体Max DM逐渐减小;当T为15°时最有利于微种植体的初期稳定性。【结论】转矩力作用下,新型微种植体颈部构型应采用较大直径,高度至少为皮质骨厚度,锥度为适宜角度。 [ Objective ] To investigate the influence of neck design of mini-implant on the primary stability after loading with torque force using three-dimension finite element analysis. [ Methods ] After established new mini-implants and bone block models, a torque force equaling to 6 N·mm was applied on the top of mini-implants. Set the range of the enlarged mini-implant neck parameters value : height 0 - 2 mm, diameter 1.3 - 1.6 mm and taper 0-60°. Fixed two variables and investigated the action of cortical bone maximum equivalent stress (Max EQV), cancellous bone maximum equivalent stress (Max EQV), and maximum displacements (Max DM) of mini-implants as another variable changing under torque force. [ Results ] With the increase of H, Max EQV in cortical bone and Max DM of mini-implant showed a trend of decrease, but the variation amplitude decreased when H exceeds the thickness of cortical bone. There was a decrease in the cortical bone Max EQV and mini-implant Max DM as D increased. In this research range, the stability was good when T equaled to 15°. [Conclusion] The neck of new mini-implant should be designed with large diameter, enough height not less than cortical bone thickness and appropriate taper angle under torque force.
出处 《中山大学学报(医学科学版)》 CAS CSCD 北大核心 2016年第2期248-253,共6页 Journal of Sun Yat-Sen University:Medical Sciences
基金 广东省科技计划项目(A002014004)
关键词 转矩力 三维有限元 新型微种植体 颈部 torque finite element analysis new mini-implant neck
  • 相关文献

参考文献15

  • 1SHAPIRO PA, KOKICH VG. Uses of implants in orthodontics [J]. Dent Clin North Am, 1988, 32 (3) : 539.
  • 2FREUDENTHALER JW, BANTLEON HP, HAAS R. Bicortical titanium screws for critical orthodontic anchorage in the mandible: a preliminary report on clinical applications [J]. Clin Oral Implants Res, 2001, 12(4) : 358-363.
  • 3PARK HS, KYUNG HM, SUNG JH. A simple method of molar uprighting with micro-implant anchorage [ J ]. J Clin Orthod, 2002, 36(10): 592-596.
  • 4郭冬梅,常少海,胡玲玲,鲁颖娟,叶玉珊.Tomas微种植体矫治力系统竖直倾斜磨牙的三维有限元研究[J].中华口腔正畸学杂志,2012,19(2):86-91. 被引量:5
  • 5鲁颖娟,常少海,伍虹,余艳崧,叶玉珊.转矩对微螺钉种植体初期稳定性影响的三维有限元研究[J].中华口腔医学杂志,2013,48(1):37-40. 被引量:4
  • 6SINGH S, MOGRA S, SHE3TY VS, et al. Three- dimensional finite element analysis of strength, stability, and stress distribution in orthodontic anchorage: a conical, self-drilling miniscrew implant system [J]. Am J Orthod Dentofacial Orthop, 2012, 141(3) : 327-336.
  • 7LOMBARDO L, GRACCO A, ZAMPINI F, et al. Optimal palatal configuration for miniscrew applications [J]. Angle Orthod, 2010, 80(1): 145-152.
  • 8HEIDEMANN W, TERHEYDEN H, GERLACH KL. Analysis of the osseous/metal interface of drill free screws and self-tapping screws [J]. J Craniomaxillofac Surg, 2001, 29(2): 69-74.
  • 9SYKARAS N, IACOPINO AM, MARKER VA, et al. Implant materials, designs, and surface to pographies: their effect on osseointegration: A literature review [J]. Int J Oral Maxillofac Implants, 2000, 15 (5) : 675-690.
  • 10DUAIBIS R, KUSNOTO B, NATARAJAN R, et al. Factors affecting stresses in cortical bone around miniscrew implants : a three-dimensional finite element study[J]. Angle Orthod, 2012, 82(5): 875-880.

二级参考文献36

  • 1马俊青,王林,张卫兵,王震东,严斌.微型支抗种植体即刻加载的界面研究[J].中华口腔医学杂志,2005,40(1):41-41. 被引量:17
  • 2De Clerck H, Cornelis M, Timmerman H. Dental tours de force 4. The use of a bone anchor for holding upright a tipped molar in the lower jaw. Ned Tijdschr Tandheelkd ,2004,111 ( 1 ) : 10-13.
  • 3Chung KR, Kim SH, Chaffee MP, et al. Molar distalization with a partially integrated mini-implant to correct unilateral Class I malocclusion. Am J Orthod Dentofacial Orthop, 2010, 138 ( 6 ) : 810-819.
  • 4Ao J, Li T, Liu Y, et al. Optimal design of thread height and width on an immediately loaded cylinder implant: a finite element analysis. Comput Biol Med,2010,40(8) : 681-686.
  • 5Woodall N, Tadepalli SC, Qian F, et al. Effect of miniscrew angulation on anchorage resistance. Am J Orthod Dentofacial Orthop,2011,139(2) : e147-152.
  • 6Lekholm U, Zarb GA. Patient selection and preparation. Chicago: Quintessence, 1985 : 199-209.
  • 7Jasmine MIF, Yezdani AA, Tajir F, et al. Analysis of stress in bone and microimplants during en-masse retraction of maxillary andmandibular anterior teeth with different insertion angulations: a 3-dimensional finite element analysis study. American Journal of Orthodontics and Dentofacial Orthopedics ,2012,141 ( 1 ) : 71-80.
  • 8Cheng SJ,Tseng IY, Lee JJ, et al. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants ,2004,19 ( 1 ) : 100-106.
  • 9Chan E, Darendeliler MA. Physical properties of root cementum : Part 5. Volumetric analysis of root resorption craters after application of light and heavy orthodontic forces. Am J Orthod Dentofacial Orthop ,2005,127 (2) : 186-195.
  • 10Bahat O. Treatment planning and placement of implants in the posterior maxillae: report of 732 consecutive Nobelpharma implants. Int J Oral Maxillofae Implants, 1993,8 ( 2 ) : 151-161.

共引文献6

同被引文献25

引证文献2

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部