期刊文献+

分数阶模型在电厂控制系统中的应用 被引量:2

Application of fractional-order model in power plant control systems
下载PDF
导出
摘要 从分数阶微积分的数学定义推导出分数阶微积分的数值表达式,并利用粒子群优化算法辨识得到分数阶模型,将其应用于超超临界燃煤机组,得到燃料量与中间点压力之间的分数阶模型和整数阶模型,在所求模型的基础上设计了分数阶内模控制器,对整数阶控制器和分数阶控制器的控制效果进行对比。结果表明:分数阶内模控制器比整数阶内模控制器具有更好的控制效果和抗干扰能力。 The mathematical expression of fractional-order calculus was derived from the fractional-order calculus definition,and then the particle swarm optimization algorithm was applied to identify the fractional-order model for the relationship between the fuel flow and intermediate-point pressure in supercritical power plant.On this basis,a fractional internal model controller(IMC)was designed.Moreover,the control effects of this IMC was compared with that of the conventional integer-order IMC.The results show that the fractional-order IMC this paper designed has better control effect and anti-disturbance ability.
出处 《热力发电》 CAS 北大核心 2016年第4期106-110,共5页 Thermal Power Generation
基金 河北省教育厅2012科研项目资助项目(z2012011)
关键词 热工控制 分数阶 整数阶 内模控制器 微积分 粒子群算法 thermal engineering control fractional-order integer-order internal model controller calculus particle swarm optimization
  • 相关文献

参考文献8

  • 1SIEROCIUK D,PETRAS I. Modeling of heat transfer process by using discrete fractional-order neural net- works [C-]// 2011 16th International Conference on Methods and Models in Automation and Robotics (MMAR), 2011 : 146-150.
  • 2RODRIGUES S, MUNICHANDRAIAH N, SHUKLA A K. A review of state-of-charge indication of batteries by means of a. c. impedance measurements[J]. Journal of Power Sources, 2000,87 (1/2) : 12-20.
  • 3MATHIEU B, MELCHIOR P, OUSTALOUP A, et al. Fractional differentiation for edge detection[J]. Signal Pro- cessing, 2003,83 (11) : 2421-2432.
  • 4薛定宇,赵春娜.分数阶系统的分数阶PID控制器设计[J].控制理论与应用,2007,24(5):771-776. 被引量:163
  • 5王东风,王晓燕,韩璞.锅炉-汽轮机系统的分数阶控制器设计[J].中国电机工程学报,2010,30(5):113-119. 被引量:25
  • 6MAITI D,CHAKRABORTY M,KONAR A. A novel approach for complete identification of dynamic frac- tional order systems using stochastic optimization algo- rithms and fractional calculus[-C]// ICECE 2008 Inter- national Conference on Electrical and Computer Engi- neering, 2008: 867-872.
  • 7PODLUBNY I. Fractional differential equations[M]. San Diego : Academic Press, 19 9 9 : 6 2.
  • 8葛化敏,周杏鹏,李宏胜.分数阶PI~λD~μ控制器的设计与实现[J].工业仪表与自动化装置,2009(1):3-6. 被引量:2

二级参考文献40

  • 1曹军义,曹秉刚.分数阶控制器的数字实现及其特性[J].控制理论与应用,2006,23(5):791-794. 被引量:33
  • 2K S Miller, B Ross. An Introduction to the Fractional Calculus and Fractional Differential Equations [M]. New York: Wiley,1993.
  • 3A Oustaloup, X Moreau, M Nouillant. The CRONE sus - pension[ J ]. Control Engineering Practice, 1996,4 ( 8 ) : 1101 - 1108.
  • 4I Podlubny. Fractional - order systems and PI^λD^μ - controllers [ J ]. IEEE Trans. Automatic Control, 1999, 44 (1) :208 -21.
  • 5Chunna Zhao, D Xue, Y Q Chen. A Fractional Order PID Tuning Algorithm for a Class of Fractional Order Plants [C]. Proc. of the ICMA2005, Niagara, Canada, 2005:216 - 221.
  • 6C A Monje, Bias M Vinagre, Yangquan Chen. On Fractional PI^λ Controllers:Some Turning Rules for Robustness to Plant Uncertainties [OL]. 2003 - 05 - 12.
  • 7C A Monje, B M Vinagre, Y Q Chen. Proposals for fractional PI^λD^μ tuning [ C ]. Proceedings of the First IFAC Symposium on Fractional Differentiation and its Applications ( FDA04), Bordeaux, France, 2004.
  • 8A Oustaloup, P Melchoir, P Lanusse. The CRONE Tool- box for Matlab [ C ]. Proc. of the 11th IEEE International Symposium on ComputerAided Control System Design - CACSD,Anchorage, USA, 2000.
  • 9Valerio D, Sa'da Costa J. Time -domain implementation of fractional order controllers [J]. IEEE Proceedings: Control Theory and Applications,2005,152(5) :539 - 552.
  • 10Chen Y Q, MooreK L. Discretization schemes for fractional - order differentiators and integrators [ J ]. IEEE Transactions on Circuits and Systems Ⅰ: Fundamental- Theory and Applications,2002,49 (3) :363 - 367.

共引文献180

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部