期刊文献+

基于△MFCC和KNN的挖掘设备声音识别 被引量:2

Research on Excavation Equipment Recognition Based on △MFCC and KNN Classifier
下载PDF
导出
摘要 为保障电缆不受外力破坏,运用声音信号处理和模式识别技术,对挖掘设备声音信号进行识别。主要研究内容有:1声音信号的倒谱域特征参数分析:Mel频率倒谱系数(MFCC),一阶差分Mel频率倒谱系数(△MFCC);2采用KNN的识别算法进行测试。理论分析和实验结果表明,对于4种设备声音信号,△MFCC识别率可达86.69%,满足实际应用需求。提出的挖掘设备声音信号处理及识别算法具有通用性,可用于地下管道监测等领域。 This paper introduces the acoustic signal processing and the pattern recognition technology to identify the excavation equipment.The main research contents are: ①The frequency domain characteristic parameter extraction algorithm of acoustic signal:Mel-Frequency Cepstral Coefficients(MFCC),the first order difference features of MFCC is △MFCC;② The KNN is employed as the classifier to test the acoustic signal.Theoretical analysis and experimental results show that the△MFCC recognition rate of the four kinds of excavation equipment acoustic signals is 86.69%,which can meet the application demands.
出处 《工业控制计算机》 2016年第4期110-112,共3页 Industrial Control Computer
关键词 挖掘设备 声音信号识别 MFCC △MFCC KNN excavation equipment acoustic signal recognition MFCC △MFCC KNN
  • 相关文献

参考文献6

  • 1关巍.光纤传感技术在智能电网中的应用[J].电气技术,2014,15(3):115-119. 被引量:5
  • 2K.MEM,M.Abd,R.AI-Makhlasawy. Automatic Modulation Recognition in Wireless Multi-carrier Wireless Systems with Cepstral Features[J]. Wireless Pers Commun, 2015, 81(3): 1243-1288.
  • 3P.-P. Patil, S.-A. Pardeshi. Marathi Connected Word Speech Recognition System [C]//Jhe 2014 First International Conference on Networks & Soft Computing (ICNSC), Guntur, India, 2014: 314-318.
  • 4T.M. Cover, P.E. Hart. Nearest neighbor pattern Classification [J]. IEEE Transon Information Theory, 1967, 13(1): 21-27.
  • 5S. Taneja, C. Gupta, S. Aggarwal. MFZ-KNN-A modified fuzzy based K nearest neighbor algorithm [C]//The 2015 International Conference on Cognitive Computing and Infor-mati- on Processing (CCIP), Noida, India, 2015: 1-5.
  • 6余鹰,苗夺谦,刘财辉,王磊.基于变精度粗糙集的KNN分类改进算法[J].模式识别与人工智能,2012,25(4):617-623. 被引量:32

二级参考文献28

  • 1徐金涛,王英利,王嘉,冯建华,于永明,郑伟.全光纤电流传感器在智能电网中的应用[J].电器工业,2011(1):53-57. 被引量:15
  • 2李卓明,李永倩,赵丽娟,何玉钧.光纤布里渊传感器在电力系统光缆监测中的应用探讨[J].电力系统通信,2006,27(3):37-41. 被引量:16
  • 3王煜,白石,王正欧.用于Web文本分类的快速KNN算法[J].情报学报,2007,26(1):60-64. 被引量:33
  • 4胡燕,吴虎子,钟珞.基于改进的kNN算法的中文网页自动分类方法研究[J].武汉大学学报(工学版),2007,40(4):141-144. 被引量:20
  • 5Witten L H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques. 2ud Edition. New York , USA: Elsevier, 2005.
  • 6Wu Xindong, Kumar V, Quinlan J R, et al. Top 10 Algorithms in Data Mining. Knowledge and Information Systems, 2008, 14 (1) : 1-37.
  • 7Ziarko W. Variable Precision Rough Sets Model Journal of Comput- er and System Science, 1993, 46( 1 ) : 39-59.
  • 8Pawlak Z. Rough Sets. International Journal of Computer and Infor- mation Science, 1982, 11 (3) : 341- 356.
  • 9Katzberg J D, Ziarko W. Variable Precision Rough Sets with Asymmetric Bounds // Proc of the International Workshop on Rough Sets and Knowledge Discovery : Rough Sets, Fuzzy Sets and Knowledge Discovery. Banff, Canada, 1993:167-177.
  • 10Lingras P, Chad W. Interval Set Clustering of Web Users with Rough K-Means. Journal of Intelligent Information Systems, 2004, 23(1): 5-16.

共引文献35

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部