期刊文献+

基于自适应蚁群算法在急救车辆调度上的应用 被引量:2

Application of Emergency Vehicles Scheduling Based on Adaptive Ant Colony Algorithm
下载PDF
导出
摘要 针对基本型蚁群算法迭代次数多,搜素时间较长,收敛速度慢的缺陷,采用改进的自适应蚁群算法,根据全局最优解的分布情况自适应地进行信息素范围的更新,从而动态地调整各路径上的信息素强度,同时,建立数学模型,给出求解TSP问题的改进算法,仿真出通过改进的自适应蚁群算法得到的最优路径,应用到患者位置与急救调度站之间最优路径的选择。结果表明,该模型和算法在收敛速度和迭代次数上均优于基本型蚁群算法。 In view of the defects from the basic ant colony algorithm frequent iterations and slow speed in convergence,the solution in this paper are using improved adaptive ant colony algorithm,setting up mathematical model,simulating out the optimal path through improved adaptive ant colony algorithm and applying to the choice of the optimal path between emergency dispatching station and the patients' position.The results show that the model and algorithm in convergence speed and the number of iterations are better than the basic ant colony algorithm.
作者 周桂宇 张桐
机构地区 宜宾学院
出处 《软件工程》 2016年第4期25-26,21,共3页 Software Engineering
关键词 自适应蚁群算法 迭代次数 收敛速度 最优路径 adaptive ant colony algorithm iterations the rate of convergence the optimal path
  • 相关文献

参考文献4

二级参考文献41

  • 1李晓磊,路飞,田国会,钱积新.组合优化问题的人工鱼群算法应用[J].山东大学学报(工学版),2004,34(5):64-67. 被引量:163
  • 2Colorni A,Dorigo M,Maniezzo V,et al.Distributed optimization by ant colonies[C]//Proceedings of the 1st European Conference on Artificial Life,1991:134-142.
  • 3Dorigo M.Optimization,learning and algorithms[D].Department of Electronics,Politecnico diMilano,Italy,1992.
  • 4Dorigo M,Maniezzo V,Colorni A.Ant system:optimization by a colony of cooperating agents[J].IEEE Transaction of Systems,Man,and Cybernetics-Part B,1996,26(1):29-41.
  • 5Bonabeau E,Dorigo M,Theraulaz G.Inspiration for optimization from social insect behavior[J].Nature,2000,406(6):39-42.
  • 6Gutjahr W J.A generalized convergence result for the graph based ant system,Technical Report 99-09[R].Dept of Statistics and Decision Support Systems,University of Vienna,Austria,1999.
  • 7Gutjahr W J.A graph-based ant system and its convergence[J].Future Generation Computer Systems,2000,16(8):873-888.
  • 8Dorigo M,Gambardella L M.Ant Colony System:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1 (1):53-66.
  • 9Beckers R,Deneubourg J L,Goss S.Trails and U-turns in the selection of the shortest path by the ant Lasius Niger[J].Theoretical Biology,1992,159:397-415.
  • 10Goss S,Aron S,Deneubourg J L,et al.Self-organized shortcuts in the argentine ant[J].Naturwissenschaften,1989,76:579-581.

共引文献86

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部