期刊文献+

Thermal light subwavelength diffraction using positive and negative correlations 被引量:1

Thermal light subwavelength diffraction using positive and negative correlations
原文传递
导出
摘要 Ghost imaging and diffraction, inspired by the Hanbury Brown and Twiss effect, have potential in both classical and quantum optics regimes on account of their nonlocal characteristics and subwavelength resolution capabil- ity, and therefore have aroused particular interest. By extending the correspondence imaging scheme, we utilize the positive and negative intensity correlations in diffraction and perform subwavelength diffraction with pseudo-thermal light. In the experiment, a subwavelength (λ/2) resolution and a better signal-to-noise ratio (10.3% improvement) are simultaneously achieved. The scheme can be utilized as a complement to the existing ghost imaging scheme to improve image quality. Ghost imaging and diffraction, inspired by the Hanbury Brown and Twiss effect, have potential in both classical and quantum optics regimes on account of their nonlocal characteristics and subwavelength resolution capabil- ity, and therefore have aroused particular interest. By extending the correspondence imaging scheme, we utilize the positive and negative intensity correlations in diffraction and perform subwavelength diffraction with pseudo-thermal light. In the experiment, a subwavelength (λ/2) resolution and a better signal-to-noise ratio (10.3% improvement) are simultaneously achieved. The scheme can be utilized as a complement to the existing ghost imaging scheme to improve image quality.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第4期11-15,共5页 中国光学快报(英文版)
基金 supported by the National Basic Research Program of China(No.2010CB922904) the National Natural Science Foundation of China (No.61307021) the China Scholarship Council (No.201306025016)
关键词 Imaging techniques LIGHT Quantum optics Signal to noise ratio Imaging techniques Light Quantum optics Signal to noise ratio
  • 相关文献

参考文献35

  • 1R. H. Brown and R. Q. Twiss, Nature 177, 27 (1956).
  • 2T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, Phys. Rev. A 52, R3429 (1995).
  • 3R. S. Bennink, S. J. Bentley, and R. W. Boyd, Phys. Rev. Lett. 89, 113601 (2002).
  • 4R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, Phys. Rev. Lett. 92, 033601 (2004).
  • 5A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, Phys. Rev. Lett. 93, 093602 (2004).
  • 6G. Scarcelli, A. Valencia, and Y. H. Shih, Europhys. Lett. 68, 618(2004).
  • 7D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, Opt. Lett. 30, 2354(2005).
  • 8R. S. Aspden, D. S. Tascal, R. W. Boyd, and M. J. Padgett, New J. Phys. 15, 073032 (2013).
  • 9B. Q. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, Science 340, 844 (2013).
  • 10X. Xu, E. Li, X. Shen, and S. Han, Chin. Opt. Lett. 13, 071101 (2015).

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部