期刊文献+

Microwave photonic phase shifter with spectral separation processing using a linear chirped fiber Bragg grating 被引量:4

Microwave photonic phase shifter with spectral separation processing using a linear chirped fiber Bragg grating
原文传递
导出
摘要 A stable and broadband microwave photonic phase shifter based on the combined use of a linear chirped fiber Bragg grating and optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. The quality of the radio frequency (RF) signal is improved by the spectral separation delay processing. The theoretical fundamentals of the scheme are explained and the phase shift can be controlled linearly by the wave- length of the light source. In the experiment, a full 360° phase shift with a 10 GHz bandwidth can be achieved and tuned dynamically, continuously, and stably. A stable and broadband microwave photonic phase shifter based on the combined use of a linear chirped fiber Bragg grating and optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. The quality of the radio frequency (RF) signal is improved by the spectral separation delay processing. The theoretical fundamentals of the scheme are explained and the phase shift can be controlled linearly by the wave- length of the light source. In the experiment, a full 360° phase shift with a 10 GHz bandwidth can be achieved and tuned dynamically, continuously, and stably.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第4期16-19,共4页 中国光学快报(英文版)
基金 supported by the National "973" Program of China(No.2012CB315604) the Natural Science Foundation of China(Nos.61575028 and 61331008) the Program for New Century Excellent Talents in University(No.NCET-12-0793) the Beijing Nova Program (No.2011065) the Open Fund of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)
关键词 Bragg gratings Fiber Bragg gratings Light sources Phase shift Bragg gratings Fiber Bragg gratings Light sources Phase shift
  • 相关文献

参考文献18

  • 1J. Shen, G. Wu, L. Hu, W. Zou, and J. Chen, Opt. Lett. 39, 2346(2014).
  • 2C. Gao, S. Huang, J. Xiao, X. Gao, Q. Wang, Y. Wei, W. Zhai, W. Xu, and W. Gu, Chin. Opt. Lett. 13, 010604 (2015).
  • 3Y. Dong, H. He, and W. Hu, Opt. Lett. 32, 745 (2007).
  • 4W. Li, N. Zhu, and L. X. Wang, IEEE Photon. Technol. Lett. 23, 1013 (2011).
  • 5S. S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang,.
  • 6H. Chang, D. Bhattacharya, B. Tsap, W. H. Steier, L. R. Dalton, and H. R. Fetterman, IEEE Microw. Guided Wave Lett. 9, 357 (1999).
  • 7H. Chen, Y. Dong, H. He, W. Hu, and L. Li, Opt. Lett. 34, 2375 (2009).
  • 8X. Xue, X. Zheng, H. Zhang, and B. Zhou, Opt. Lett. 36,4641 (2011).
  • 9W. Liu, W. Li, and J. P. Yao, IEEE Photon. Technol. Lett. 25, 1107(2013).
  • 10H. Shahoei, M. Li, and J. Yao, J. Lightwave Technol. 29, 1465(2011).

同被引文献9

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部