期刊文献+

Broadband polarization beam splitter based on a negative refractive lithium niobate photonic crystal slab 被引量:6

Broadband polarization beam splitter based on a negative refractive lithium niobate photonic crystal slab
原文传递
导出
摘要 Using a lithium niobate (LN) material, we propose a broadband polarization beam splitter (PBS) with high efficiency by employing a negative refractive photonic crystal (PhC) wedge slab with an angle of 60°. It can split the incident light into two parts at about 90° with TE and TM polarizations. The transmissions of polarized light for an LN-based PBS are more than 80% with a broad angle and wavelength bandwidth of 8° and 70 nm at 1.55μm, while with a Si-based PhC, no PBS with high efficiency can be realized for the relatively lower transmission of TM output light. Using a lithium niobate (LN) material, we propose a broadband polarization beam splitter (PBS) with high efficiency by employing a negative refractive photonic crystal (PhC) wedge slab with an angle of 60°. It can split the incident light into two parts at about 90° with TE and TM polarizations. The transmissions of polarized light for an LN-based PBS are more than 80% with a broad angle and wavelength bandwidth of 8° and 70 nm at 1.55μm, while with a Si-based PhC, no PBS with high efficiency can be realized for the relatively lower transmission of TM output light.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第4期69-72,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos.11574208 and 1174204
关键词 Efficiency Light sources Niobium compounds Optical instruments Photonic crystals Polarization PRISMS Refractive index Efficiency Light sources Niobium compounds Optical instruments Photonic crystals Polarization Prisms Refractive index
  • 相关文献

参考文献24

  • 1R. C. Tyan. P. C. Sun, A. Scherer, and Y. Fainman. Opt. Lett. 21, 761 (1996).
  • 2X. J. Yu and H. S. Kwok, J. Appl. Phys. 93, 4407 (2003).
  • 3J. She, E. Forsberg, X. Y. Ao, and S. L. He, J. Opt. A: Pure Appl. Opt. 8, 345 (2006).
  • 4M. Sesay, X. Jin, and Z. B. Ouyang, J. Opt. Soc. Am. B 30. 2043(2013).
  • 5T. Yu, H. J. Huang, N. Liu, J. Yang, Q. Liao, and X. Jiang, Appl. Opt. 49, 2168 (2010).
  • 6C. Ren, J. Tian, S. Feng, H. H. Tao, Y. Z. Liu, K. Ren, Z. Y. Li, B. Y. Cheng, D. Z. Zhang, and H. F. Yang, Opt. Express 14. 10014 (2006).
  • 7Y. Z. Liu. R. J. Liu, C. Z. Zhou, D. Z. Zhang, and Z. Y. Li, Opt. Express 16, 21483 (2008).
  • 8L. Gan and Z. Y. Li, Sci China-Phys. Mecli. Astron. 58, 114203(2015).
  • 9J. Lu, H. Ren, S. Guo. D. Gu, H. Wen, Y. Qin, S. Zhou, W. Hu. andC. Jiang, Chin. Opt. Lett. 12, 102301 (2014).
  • 10A. M. Lerer, I. V. Donets, G. A. Kalinchenko, and P. V. Makhno. Photon. Res. 2, 31 (2014).

同被引文献25

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部