摘要
计算能耗高和散热问题使传统计算芯片的集成度和运算能力的提升遇到瓶颈.大规模量子计算探索的关键是比特的相干叠加性和可逆性.因此,可逆计算既作为一种可能从根本上解决计算耗能高和散热问题的方案,又作为一种兼容量子计算的方案,近年来在理论上和实验上得到了深入的研究.本文介绍了可逆计算的基本原理,总结了目前基于微机械、传统微电子和超导领域的可逆计算实验研究进展,分析了超导器件实现可逆计算的独特优势,并着重对其中两种器件的工作原理进行了论述.
The problems of heat removal and high electrical energy consumption cause significant bottlenecks in the development of the integration density of IC chips and the processing capability of supercomputers.The reversibility of single quantum bits and the coherence between them are persistent subjects for implementing large-scale quantum computation.Therefore,reversible computing has been widely developed in theory and experiments because of its ultra-low power dissipation and compatibility with quantum computing.In this review paper,we introduce the principle of reversible computing,summarize its experimental progress in micro-mechanics,CMOS and superconducting fields,analyze the advantages of superconducting devices,and discuss two promising superconducting devices for realizing large-scale reversible computing circuits.
出处
《中国科学:信息科学》
CSCD
北大核心
2016年第4期417-430,共14页
Scientia Sinica(Informationis)
基金
国家重点基础研究发展计划(批准号:2011CBA00304)
清华大学自主科研计划(批准号:20131089314)资助项目
关键词
可逆计算
计算能耗
可逆逻辑门
超导可逆计算
reversible computing
energy consumption
reversible logic gate
superconducting reversible computing