期刊文献+

可逆计算原理与实验进展

Principle and progress of reversible computing
原文传递
导出
摘要 计算能耗高和散热问题使传统计算芯片的集成度和运算能力的提升遇到瓶颈.大规模量子计算探索的关键是比特的相干叠加性和可逆性.因此,可逆计算既作为一种可能从根本上解决计算耗能高和散热问题的方案,又作为一种兼容量子计算的方案,近年来在理论上和实验上得到了深入的研究.本文介绍了可逆计算的基本原理,总结了目前基于微机械、传统微电子和超导领域的可逆计算实验研究进展,分析了超导器件实现可逆计算的独特优势,并着重对其中两种器件的工作原理进行了论述. The problems of heat removal and high electrical energy consumption cause significant bottlenecks in the development of the integration density of IC chips and the processing capability of supercomputers.The reversibility of single quantum bits and the coherence between them are persistent subjects for implementing large-scale quantum computation.Therefore,reversible computing has been widely developed in theory and experiments because of its ultra-low power dissipation and compatibility with quantum computing.In this review paper,we introduce the principle of reversible computing,summarize its experimental progress in micro-mechanics,CMOS and superconducting fields,analyze the advantages of superconducting devices,and discuss two promising superconducting devices for realizing large-scale reversible computing circuits.
出处 《中国科学:信息科学》 CSCD 北大核心 2016年第4期417-430,共14页 Scientia Sinica(Informationis)
基金 国家重点基础研究发展计划(批准号:2011CBA00304) 清华大学自主科研计划(批准号:20131089314)资助项目
关键词 可逆计算 计算能耗 可逆逻辑门 超导可逆计算 reversible computing energy consumption reversible logic gate superconducting reversible computing
  • 相关文献

参考文献66

  • 1Moore G E. Cramming more components onto integrated circuits. Proc IEEE, 1998, 86:82-85.
  • 2Geist A. Paving the roadmap to exascale. SciDAC Rev, 2010, 16:52-59.
  • 3Ball P. Computer engineering: feeling the heat. Nature, 2012, 492:174-176.
  • 4Service R F. Computer science. What it'll take to go exascale. Science, 2012, 335:394-396.
  • 5Mukhanov O A. Energy-efficient single flux quantum technology. IEEE Trans Appl Supercond, 2011, 21:760-769.
  • 6Zhirnov V V, Cavin R K, Hutchby J A, et al. Limits to binary logic switch scaling-a gedanken model. Proc IEEE, 2003, 91:1934-1939.
  • 7Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2002.
  • 8Fedorov A, Steffen L, Baur M, et al. Implementation of a Toffoli gate with superconducting circuits. Nature, 2012, 481:170-172.
  • 9Nakamura Y, Pashkin Y A, Tsai J S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature, 1999, 398:786-788.
  • 10Friedman J R, Patel V, Chen W, et al. Quantum superposition of distinct macroscopic states. Nature, 2000, 406: 43-46.

二级参考文献16

  • 1Shende V V, Prasad A K, Markov I L, Hayes J P. Synthesis of reversible logic circuits. IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, 2003, 22(6) : 710-722.
  • 2Li Zhiqiang, Chen Hanwu, Xu Baowen, et al. Fast algorithm for 4-qubit reversible logic circuits synthesis//Proceedings of the Evolutionary Computation ( IEEE World Congress on Computational Intelligence). Hong Kong, China, 2008: 2202-2207.
  • 3Wille R, Grol3e D. Fast exact Toffoli network synthesis of reversible logic//Proceedings of the 2007 IEEE/ACM Inter- national Conference on Computer-Aided Design. San Jose, USA, 2007:60-64.
  • 4Wille R, Le H M, Dueck G W, GroBe D. Quantified synthesis of reversible logic//Proeeedings of the Design Automation Test Europe Conference. Munich, Germany, 2008: 1015- 1020.
  • 5Yang Guowu, Hung W N N, Song Xiaoyu, Perkowski M. Exact synthesis of 3-qubit quantum circuits from non-binary quantum gates using multiple-valued logic//Proceedings of the IEEE/ACM Design Automation and Test in Europe (DATE). Munich, Germany, 2005:434-435.
  • 6Hung W N N, Song Xiaoyu, Yang Guowu, et al. Quantum logic synthesis by symbolic teachability analysis//Proeeedings of the 41st Annual Design Automation Conference. New York, USA, 2004: 838-841.
  • 7Miller D M, Maslov D, Dueck G W. Spectral and two-place decomposition techniques in reversible logic//Proceedings of the 45th IEEE International Midwest Symposium on Circuits and Systems. Tulsa, USA, 2002:493-496.
  • 8Miller D M, Maslov D, Dueck G W. A transformation based algorithm for reversible logic synthesis//Proceedings of the 40th Design Automation Conference. Anaheim, USA, 2003: 318-323.
  • 9Maslov D, Dueck G W, Miller D M. Toffoli network synthesis with templates. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2005, 4(6) : 807-817.
  • 10Miller D M, Dueck G W. Spectral techniques for reversible logic synthesis//Proceedings of the 6th International Symposium of Representations Methodology of Future Computing Technologies. Trier, Germany, 2003:56-62.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部