期刊文献+

魔芋葡甘聚糖/纳米羟基磷灰石/胶原复合材料构建组织工程椎间盘纤维环支架 被引量:2

Tissue-engineered annular fibrosus scaffold constructed by konjac glucomannan/ nano-hydroxyapatite/collagen composite material
下载PDF
导出
摘要 背景:研究符合天然椎间盘生物学结构与功能的组织工程移植物,对退变椎间盘进行生物学功能重建,已逐步成为治疗椎间盘退变性疾病较理想的解决方案。目的:设计构建一种新型的组织工程纤维环支架材料。方法:以魔芋葡甘聚糖、纳米羟基磷灰石和胶原为原料,依次应用湿法纺丝、化学交联、冷冻干燥等技术构建一种全新的组织工程化纤维环支架,采用X射线衍射分析和傅里叶变换红外光谱仪对其进行定性成分分析,同时对其理化性能、生物力学性能及细胞相容性进行分析。结果与结论:魔芋葡甘聚糖/纳米羟基磷灰石/胶原组织工程椎间盘纤维环支架呈三维立体多孔结构,孔径(425.8±47.3)μm,孔隙率为(73.4±5.6)%,吸水率为(718.6±24.3)%,具有与天然纤维环相似的抗压强度,具有良好的生物相容性,无细胞毒性。结果表明魔芋葡甘聚糖/纳米羟基磷灰石/胶原组织工程椎间盘纤维环支架具有适宜的三维多孔结构、生物相容性、孔隙率、吸水率和生物力学强度。 BACKGROUND: Tissue-engineered transplantation technique has become an ideal therapeutic regimen for degenerative disc diseases through reconstituting the biological functions of the degenerated intervertebral discs. OBJECTIVE: To construct a novel tissue-engineered annular fibrosus scaffold. METHODS: Konjac glucomannan, nano-hydroxyapatite and collagen were used to fabricate a new tissue-engineered annular fibrosus scaffold by wet spinning, chemical crosslinking, and freeze drying methods. Afterwards, X-ray diffraction and Fourier transform infrared spectrometer were used to analyze the scaffold qualitative components, physico-chemical property, biomechanical performance and cytocompatibility. RESULTS AND CONCLUSION: The bionic scaffold had a three-dimensional porous structure, with the average pore size of(425.8±47.3) μm, the average porosity of(73.4±5.6)%, and the water absorption of(718.6±24.3)%. In addition, the compressive strength of the scaffold was similar with that of the natural annular fibrosus. More importantly, the scaffold had good biocompatibility without cytotoxicity. These results show that the tissue-engineered annular fibrosus scaffold constructed by konjac glucomannan, nano-hydroxyapatite and collagen has proper three-dimensional porous structure, biocompatibility, porosity, water absorption and biomechanical strength.
出处 《中国组织工程研究》 CAS 北大核心 2016年第16期2412-2417,共6页 Chinese Journal of Tissue Engineering Research
基金 成都军区医学科学技术研究计划项目(C14013)~~
  • 相关文献

参考文献23

  • 1latridis JC,Nicoll SB,Michalek AJ,et aI.Role of biomechanics on intervertebral disc degeneration and regeneration therapies: what needs repairing in the disc and what are promising biometerials for its repair? Spine J.2013; 13(3):243-262.
  • 2Chan SC,Gantenbein-Ritter B.Intervertebral disc regeneration or repair and stem cell therapy--feasible or fiction? Swiss Med Wkly.2012;31(5):142.
  • 3Ratcliffe I,Williams PA,Viebke C,et aI.Physicochemical characterization of konjac glucomannan. Biomacromolecules.2005;6(4): 1977-1986.
  • 4Zhao X,Li J,Jin W, et al.Preparation and characterization of a novel pH-response dietary fiber: chitosan-coated konjac glucomannan.Carbohydr Polym.2015;117:l-10.
  • 5Zhang C, Chen JD,Yang FQ. Konjac glucomannan, a promising polysaccharide for OCDDS. Carbohydr Polym.2015; 104:175-181.
  • 6Wang J,Liu C,Shuai Y, et aI.Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels[J]. Colloids Surf B Biointerfaces. 2014;113:223-229.
  • 7Hong Y, Gong Y, Gao C,et aI.Collagen-coated polylactide microcarriers/chitosan hydrogel composite: injectable scaffold for cartilage regeneration.J Biomed Mater Res A.2008;85(3):628-637.
  • 8Zhu WK,Cong HP, Yao HB,et aI.Bioinspired, ultrastrong, highly biocompatible, and bioactive natural polymer/graphene oxide nanocomposite films.Small. 2015; 11 (34):4298-4302.
  • 9Kondo T, Shinozaki T, Oku H,et al.Konjac glucomannan- based hydrogel with hyaluronic acid as a candidate for a novel scaffold for chondrocyte culture. J Tissue Eng Regen Med.2009;3(5):361-367.
  • 10Ma T, Shang BC,Tang H,et aI.Nano-hydroxyapatite/ chitosan/konjac glucomannan scaffolds loaded with cationic liposomal vancomycin: preparation, in vitro release and activity against Staphylococcus aureus biofilms.J Biomater Sci Polym Ed.2011; 22(12): 1669-1681.

二级参考文献52

  • 1白伦.长丝工艺学[M].上海:东华大学出版社,2011:301.
  • 2Rissanen M, Puolakka A, Ahola N, et al. Effect of protein- loading on properties of wet-spun poly (L, D-actide) multi- filament fibers[J3, j Appl Polym Sci,2010,116(4).2174.
  • 3Yudin V E, Dobrovolskaya I P, Neelov I M, et al. Wet spinning of fibers made of chitosan and chitin nanofibrils [J]. Carbohydr Polym,2014,108:176.
  • 4Ucar S, Yilgor P, Hasirci V, et al. Chitosan-based wet- spun scaffolds for bioactive agent delivery[J]. J Appl Polym Sci, 2013,130(5) : 3759.
  • 5Liu Y, Shao Z, Vollrath F. Extended wet-spinning can modify spider silk properties[J]. Chem Commun, 2005,19 ~ 2489.
  • 6Meyer M, Baltzer H, Schwikal K, Collagen fibres by ther- moplastic and wet spinning[J]. Mater Sci Eng C,2010,30 (8):1266.
  • 7Lin H Y, Wang H W. The influence of operating parame- ters on the drug release and antibacterial performances of al- ginate fibrous dressings prepared by wet spinning[J]. Bio- matter, 2012,2(4) : 321.
  • 8Mathiowitz E, Lavin D M, Hopkins R A. Wet spun micro- fibers: Potential in the design of controlled-release scaf- folds? [J]. Therapeutic Delivery, 2013,4(9) : 1075.
  • 9Joshua S B,Kerr H M,Howard N E S, et al. Wound healing dressings and drug delivery systems: A review[J]. J Pharma- ceutical Sci, 2008,97 (8) : 2892.
  • 10Nie H L, Ma Z H, Fan Z X, et al. Polyacrylonitrile fibers efficiently loaded with tamoxifen citrate using wet-spinning from co-dissolving solution[J]. Int J Pharmaceutics, 2009, 373(1):4.

共引文献7

同被引文献38

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部