期刊文献+

非二进制低密度奇偶校验码在16QAM光传输系统中的性能 被引量:1

Performance of Non-binary Low Density Parity Check Codes in 16QAM Optical Transmission Systems
下载PDF
导出
摘要 以16-相正交幅度调制(16QAM)为例,分析比较了伽罗华(GF(2 m))域上m=1,2,4时,3种低密度奇偶校验(LDPC)码在16QAM光传输系统中的性能.分析表明,无论在纠错性能还是译码效率方面,4进制LDPC码比16进制LDPC码具有更大优势.为进一步改善高阶调制光传输系统中非二进制低密度奇偶校验(NB-LDPC)码的性能,在16QAM系统下的4进制LDPC码中引入水印位符号.与传统的非二进制LDPC译码方案相比,水印位方案的平均迭代次数显著下降,即引入水印位可以极大地提高NB-LDPC码的译码效率.当误码率BER=10-5时水印位方案可以改善0.1dB的净编码增益. Taken 16 Quadrature Amplitude Modulation(16QAM)as an example,the performance of three kinds of LDPC codes over Galois fields(GF(2^m))for m=1,2,4in 16 QAM systems was analyzed.The simulation results show that 4-ary LDPC code,rather than 16-ary LDPC,shows significant advantages in both error correction performance and decoding efficiency.Then in order to further improve the performance of NB-LDPC codes in high-order modulation systems,the watermark symbols are introducted into 4-ary LDPC codes in 16 QAM systems.Compared with traditional non-binary LDPC decoding,the average iteration number of watermark scheme presents a quite obvious decrease,it means that the decoding efficiency can be greatly improved by using watermark scheme.Moreover a further Net Code Gain(NCG)improvement of about 0.1dB can be attained when bit error ratio BER=10-5.
出处 《光子学报》 EI CAS CSCD 北大核心 2016年第4期71-75,共5页 Acta Photonica Sinica
基金 国家自然科学基金(Nos.61271192 61331010 61427813) 国家高技术发展研究计划(No.2013AA013401)资助~~
关键词 光通信 低密度奇偶校验码 高阶调制 纠错性能 译码效率 Optical communications Low density parity check codes High-order modulation Error correction performance Decoding efficiency
  • 相关文献

参考文献4

二级参考文献16

  • 1K. Sean, F. Tobias, B. Polina, and K. Robert I, Opt. Express 20, 4198 (2012).
  • 2E. Desurvire, J. Lightw. Technol. 24, 4697 (2006).
  • 3J. Rcnaudier,O.Bertran-Pardo,A. Ghazisaeidi,P.Tran,H. Mardoyan, P. Brindel, A. Voicila, G. Charlet, and S. Bigo, in Proceedings of Optical Fiber Communication Conference OTu3B.l (2013).
  • 4D. Qian, J. Yu, J. Hu, P. Ji, and T. Wang, in Proceedings of European Conference and Exhibition on Optical Communications Mo.3.E.4 (2008).
  • 5F. Li, J. Yu, Y. Fang, Z. Dong, X. Li, and L. Chen, Opt. Express22, 8742 (2014).
  • 6Z. Dong, X. Li, J. Yu, and N. Chi, J. Lightw. Technol. 30, 3687 (2012).
  • 7M. Arabaci and I. B. Djordjevic,, in Proceedings of Optical Fiber Communication Conference OWF2 (2011).
  • 8F. Chang, K. Onohara, and T. Mizuochi, IEEE Commun. Mag. 48, S48 (2010).
  • 9R. G. Gallager, IEEE Inform. Theory 8, 21 (1962).
  • 10T. J. Richardson and R. Urbanke, Modern Coding Theory (Cambridge University Press, 2008).

共引文献1

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部