期刊文献+

碱煮过程浸出率预测与优化研究 被引量:1

Prediction and Optimization of Leaching Rate during Alkali Boiling Process
下载PDF
导出
摘要 针对钨碱煮过程WO_3浸出率预测困难的问题,建立了动态机理模型与最小二乘支持向量机(LSSVM)相结合的并联混合模型,在该混合模型的基础上,构建了碱煮过程优化模型,将动态浸出问题转化为带约束的优化问题,并以粒子群优化(PSO)算法对优化模型进行求解。仿真结果表明,混合模型预测精度高,优化模型效果好,提高了WO_3浸出率,降低了浸出成本。 A parallel hybrid model combined with dynamic mechanism model and LS-SVM was built to predict WO3 leaching rate during tungsten alkali boiling process. Based on this hybrid model, alkali boiling process optimization model was established to transform dynamic leaching problem into constrained optimization problem. Then optimization model was solved with particle swarm optimization (PSO) algorithm. The simulation results show that hybrid model has advantages of high prediction accuracy, good performance, high leaching rate of WO3, and low leaching cost.
出处 《有色金属(冶炼部分)》 CAS 北大核心 2016年第5期29-32,共4页 Nonferrous Metals(Extractive Metallurgy)
基金 国家自然科学基金资助项目(61364014) 江西省对外科技合作项目(2010EHA01400)
关键词 浸出率 机理模型 最小二乘支持向量机 粒子群算法 优化模型 leaching rate mechanism model LS-SVM PSO algorithm optimization model
  • 相关文献

参考文献10

二级参考文献121

共引文献84

同被引文献20

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部