期刊文献+

△=3的图的邻和可区别全可选性(英文) 被引量:2

Neighbor Sum Distinguishing Total Choosability of Graphs With △=3
原文传递
导出
摘要 设图G=(V,E),φ:V∪E→{1,2,…,k}为图G的一个正常全染色.令f(v)表示点v及所有与其关联的边的颜色的加和.若对任意uv∈E(G),有f(u)≠f(v),则称φ是图G的邻和可区别全染色.Pilsniak和Wozniak最早研究了邻和可区别全染色,并猜想对于任意图G,若k≥△(G)+3,则其存在邻和可区别全染色.图G的最大平均度,记为mad(G),是G的所有非空子图的平均度的最大值.本文运用组合零点定理与权转移方法证明了:若图G满足△(G)=3且mad(G)<(44)/(15),则ch_Σ″(G)≤6(其中ch_Σ″(G)为图G的邻和可区别全可选性). Let G =(V,E) be a graph and φ:V U E → {1,2,…,k} be a proper total coloring of G.Let f(v) denote the sum of the color on vertex v and the colors on the edges incident with v.We say that the proper total coloring φ is neighbor sum distinguishing if for each edge uv ∈ E(G),f(u) ≠ f(v).Pilsniak and Wozniak first introduced this coloring and conjectured that such coloring exists for any graph G if k ≥ △(G) + 3.The maximum average degree of G is the maximum of the average degree of its non-empty subgraphs,which is denoted by mad(G).In this paper,by using the Combinatorial Nullstellensatz and the discharging method,we prove that the conjecture holds for some graphs in their list versions.More precisely,we prove that if G is a graph with △(G) = 3 and mad(G) (44)/(15),(G) ≤6(where ch_∑″(G) is the neighbor sum distinguishing total choosability of G).
出处 《数学进展》 CSCD 北大核心 2016年第3期343-348,共6页 Advances in Mathematics(China)
基金 Supported by NSFC(No.11301134,No.11301135) HUSTP(No.ZD2015106) HNSF(No.A2015202301,No.A2012202067)
关键词 邻和可区别全可选性 最大平均度 组合零点定理 neighbor sum distinguishing total choosability maximum average degree Combinatorial Nullstellensatz
  • 相关文献

参考文献3

二级参考文献2

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2Hualong LI Bingqiang LIU Guanghui WANG.Neighbor sum distinguishing total colorings of K4-minor free graphs[J].Frontiers of Mathematics in China,2013,8(6):1351-1366. 被引量:25

共引文献31

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部