期刊文献+

消圈数与图的嵌入(英文)

Decycling Number and Graph Embeddings
原文传递
导出
摘要 设▽(G)表示最少的点数,这些点去掉后图中无圈(即森林).称这个数▽(G)为图G的消圈数.通常,确定图的消圈数是NP完全的.Bau和Beineke曾提出以下问题:哪些阶数为n的3正则图G的消圈数满足▽(G)=[(n+2)/4]?本文回答了这个问题:阶数为n的3正则图G的消圈数满足▽(G)=[(n+2)/4]当且仅当G是上嵌入的(即以最多两个面嵌入在可定向曲面上).其次,对于一般3正则图,得出其消圈数的计算公式为▽(G)=γ_M(G)+ζ(G),这里γ_M(G)表示图的最大亏格,ζ(G)表示图G的Betti亏数.由此可知,3正则图的最大亏格的计算的多项式算法是存在的,所以3正则图的消圈数的计算也是多项式可解的. Let ▽(G) denote the minimum number of vertices whose removal results in an acyclic graph(i.e.,a forest).Such a number ▽(G) is called the decycling number of graph G.In general,deciding the decycling number of a graph is NP-complete.Bau and Beineke proposed the following question:Which cubic graphs G of order n satisfy ▽(G) =[(n+2)/4]? In this paper we solve this problem and show that a cubic graph G of order n has decycling number▽(G) =[(n+2)/4]if and only if G is upper-embeddable(i.e.,may be embedded in an orientable surface having at most two faces).Furthermore,we find that the decycling number of a cubic graph G is ▽(G) = γ_m(G) + ζ(G),where γ_m(G) and ζ(G) are,respectively,the maximum genus of G and the Betti deficiency of G.Since there exists a polynomial time algorithm to find the maximum genus of cubic a graph,there also exists a polynomial time algorithm to find the decycling number of a cubic graph.
作者 任韩 魏二玲
出处 《数学进展》 CSCD 北大核心 2016年第3期349-356,共8页 Advances in Mathematics(China)
基金 supported by NSFC(No.11171114,No.11401576)
关键词 3正则图 BETTI亏数 Xuong树 消圈数 cubic graph Betti deficiency Xuong tree decycling number
  • 相关文献

参考文献11

  • 1Bau, S. and Beineke, L.W., The decycling number of graphs, Australas. J. Combin., 2002, 25: 285-298.
  • 2Beineke, L.W. and Vandell, R.C., Decycling graphs, J. Graph Theory, 1996, 25(1): 59-77.
  • 3Bondy, J.A. and Murty, U.S.R., Graph Theory With Applications, London: Macmillan, 1976.
  • 4Chen, J.E., Archdeacon, D. and Gross, J.L., Maximum genus and connectivity, Discrete Math., 1996, 149(1) 19-29.
  • 5ErdSs, P., Saks, M. and SSs, V.T., Maximum induced trees in graphs, J. Combin. Theory Set. B, 1986, 41(1) 61-79.
  • 6Karp, R.M., Reducibility among combinatorial problems, In: Complexity of Computer Computations (Miller R.E. and Thatcher, J.W. eds.), New York: Plenum, 1972, 85-103.
  • 7Merrick, L.F., Jonathan, L.G. and Lyle, A.M., Finding a maximum-genus graph imbedding, J. ACM, 1988 35: 523-534.
  • 8Nesbesky, L., A new characterization of the maximum genus of graphs, Czechoslovak Math. J., 1981, 31(106) 604-613.
  • 9Wang, C.C., Lloyd, E.L. and Sofia, M.L., Feedback vertex sets and cyclically reductible graphs, J. ACM 1985, 32(2): 296-313.
  • 10Xuong, N.H., How to determine the maximum genus of a graph, J. Combin. Theory Ser. B, 1979, 23(2) 217-225.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部