摘要
本文研究了一维p-Laplacian问题(|u′(t)|^(p-2)u′(t))′+λf/(u(t))=0,0<t<1,u(0)-αu′(0)=0,u(1)+βu′(1)=0,(P)变号解的存在性,其中p∈(1,2],λ>0,α≥0,β≥0,f:R→R足够光滑,f(0)<0.证明了存在λ~*∈(0,∞)使得当λ∈(0,λ~*)时,问题(P)有唯一确切的满足特定结点性质的解.主要结果基于时间映像分析法.
In this paper we investigate the existence of the sign-changing solutions of the one-dimensional p-Laplacian(|u′(t)|^(p-2)u′(t))′ + λf/(u(t)) = 0,0t1,u(0)-αu′(0) = 0,u(1) + βu′(1) = 0,(P)where p ∈(1,2],λ 0,α≥0,β≥0,f:R→ R smooth enough,f(0) 0.We also obtain that there exists λ~* ∈(0,∞) such that(P) has exactly one solution having specified nodal properties for λ∈(0,λ~*).Our main results are based on time-map method.
出处
《数学进展》
CSCD
北大核心
2016年第3期379-389,共11页
Advances in Mathematics(China)