期刊文献+

一维p-Laplacian半正问题的变号解(英文) 被引量:1

Sign-changing Solutions of the One-dimensional p-Laplacian Semi-positone Problems
原文传递
导出
摘要 本文研究了一维p-Laplacian问题(|u′(t)|^(p-2)u′(t))′+λf/(u(t))=0,0<t<1,u(0)-αu′(0)=0,u(1)+βu′(1)=0,(P)变号解的存在性,其中p∈(1,2],λ>0,α≥0,β≥0,f:R→R足够光滑,f(0)<0.证明了存在λ~*∈(0,∞)使得当λ∈(0,λ~*)时,问题(P)有唯一确切的满足特定结点性质的解.主要结果基于时间映像分析法. In this paper we investigate the existence of the sign-changing solutions of the one-dimensional p-Laplacian(|u′(t)|^(p-2)u′(t))′ + λf/(u(t)) = 0,0t1,u(0)-αu′(0) = 0,u(1) + βu′(1) = 0,(P)where p ∈(1,2],λ 0,α≥0,β≥0,f:R→ R smooth enough,f(0) 0.We also obtain that there exists λ~* ∈(0,∞) such that(P) has exactly one solution having specified nodal properties for λ∈(0,λ~*).Our main results are based on time-map method.
作者 蒋玲芳
出处 《数学进展》 CSCD 北大核心 2016年第3期379-389,共11页 Advances in Mathematics(China)
关键词 变号解 时间映像分析法 一维P-LAPLACIAN方程 半正问题 sign-changing solutions time-map method one-dimensional p-Laplacian semipositone problems
  • 相关文献

参考文献23

  • 1Addou, I., Bouguima, S.M., Derhab, M. and Rafted, Y., Multiple solutions of Dirichlet problems, Dynam. Systems Appl., 1998, 7(4): 575-601.
  • 2Anello, G. and Cordaro, G., Existence of solutions of the Neumann problem for a class of equations involving the p-Laplacian via a variational principle of Ricceri, Arch. Math., 2002, 79(4): 274-287.
  • 3Anuradha, V. and Shivaji, R., Sign-changing solutions for a class of superlinear multi-parameter semi-positone problems, Nonlinear Anal., 1995, 24(11): 1581-1596.
  • 4Anuradha, V., Shivaji, R. and Zhu, J., On S-shaped bifurcation curves for multiparameter positone problem, Appl. Math. Comput., 1994, 65(1/2/3): 171-182.
  • 5Aranda, C. and Godoy, T., Existence and multiplicity of positive solutions for a singular problem associated to the p-Laplacian operator, Electron. J. Differential Equations, 2004, 2004(132): 1-15.
  • 6Bouchala, J., Strong resonance problems for the one-dimensional p-Laplacian, Electron. J. Differential Equations, 2005, 2005(8): 1-10.
  • 7Bouguima, S.M. and Lakmeche, A., Multiple solutions of a nonlinear problem involving the p-Laplacian, Comm. Appl. Nonlinear Anal., 2000, 7(3): 83-96.
  • 8De Coster, C., Pairs of positive solutions for the one-dimensional p-Laplacian, Nonlinear Anal., 1994, 23(5): 669- 681.
  • 9Diaz, J.I. and De Thelin, F., On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math. Anal., 1994, 25(4): 1085-1111.
  • 10Drbek, P., Girg, P., Takc, P. and Ulm, M., The Fredholm alternative for the p-Laplacian: Bifurcation from infinity, existence and multiplicity of solutions, Indiana Univ. Math. J., 2004, 53(2): 433-482.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部