期刊文献+

基于离散观测混合次分数Brown运动的极大似然估计(英文) 被引量:1

Maximum Likelihood Estimators for the Sub-mixed Fractional Brownian Motion at Discrete Observation
原文传递
导出
摘要 本文利用极大似然方法基于离散观测研究混合次分数Brown运动的参数估计问题,得到了这些估计的渐近性质.结合Stein方法和Malliavin积分证明了相应估计的渐近正态性.模拟结果表明本文的方法是有效的. In this paper,we investigate the problem of estimating the parameters for the sub-mixed fractional Brownian motion from discrete observations based on the maximum likelihood method.We obtain the asymptotic properties of these estimators.By combining the Stein's method with Malliavin calculus we prove the asymptotic normality for the corresponding estimators.Simulation results show that our method is efficient.
作者 匡能晖
出处 《数学进展》 CSCD 北大核心 2016年第3期471-479,共9页 Advances in Mathematics(China)
基金 Supported by NSFC(No.11101137) the Natural Science Foundation of Hunan Province(No.2015JJ2055) the Education Department Foundation of Hunan Province(No.14C0456) the Natural Science Foundation of Hunan University of Science and Technology(No.E54018)
关键词 极大似然估计 混合次分数Brown运动 渐近正态性 Malliavin积分 maximum likelihood estimator sub-mixed fractional Brownian motion asymptotic normality Malliavin calculus
  • 相关文献

参考文献2

二级参考文献17

  • 1韦来生,张伟平.EMPIRICAL BAYES TEST PROBLEMS OF VARIANCE COMPONENTS IN RANDOM EFFECTS MODEL[J].Acta Mathematica Scientia,2005,25(2):274-282. 被引量:3
  • 2F Baudoin, D Nualart. Equivalence o] Volterra processes, Stochastic Process Appl, 2003, 107: 327-350.
  • 3T Bojdecki, L G Gorostiza, A Talarczyk. Sub-fractional Brownian motion and its relation to occupation times, Statist Probab Lett, 2004, 69: 405-419.
  • 4T Bojdecki, L G Gorostiza, A Talarczyk. Fractional Brownian Density and its Self-Intersection Local Time of Order k, J Theoret Probab, 2004, 17: 717-739.
  • 5T Bojdecki, L C Gorostiza, A Talarczyk. Particle systems with quasi-homogeneous initial states and their occupation time Juctuations Electron Commun Probab 2010, t5: 191-202.
  • 6P Cheridito. Mixed fractional Brownian motion, Bernoulli, 2001, 7: 913-934.
  • 7C Dellacherie. P A Mever. Probabilitds et Potentiel: ChaDitres V VIIL Paris, Hermanm 1980.
  • 8C E1-Nouty. The fractional mixed fractional Brownian motion, Statist Probab Lett, 2003, 65: 111-120.
  • 9C E1-Nouty. The lower classes of the sub-fractional Brownian motion, In: Stochastic Differential Equations and Processes, Springer Proc Math, 2012, 7: 179-196.
  • 10G H Golub, C F Van Loan. Matrix Computations, Hopkins University Press, 1989.

共引文献13

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部