期刊文献+

多壁碳纳米管冷冻机油密度和热导率的实验研究

Experimental study on density and thermal conductivity of multiwalled carbon nanotube nanolubricate
下载PDF
导出
摘要 采用超声振荡的方法制备稳定性良好的多壁碳纳米管冷冻机油。在不同温度(20~80℃)下,利用密度计和热导率测试系统对不同浓度的多壁碳纳米管冷冻机油(MWCNTs的质量分数为0.5%、1.0%、1.5%、2.0%)进行测试和分析。实验结果表明:冷冻机油的密度随MWCNTs质量分数的增加而增大,随温度的升高而减小;冷冻机油的热导率随MWCNTs质量分数的增大而增大,随温度的升高而增大,其中,热导率增大的效果随质量分数增加较随温度升高更为明显。当多壁碳纳米管质量分数为2%、温度为80℃时,纳米冷冻机油的热导率可达到0.1637W/(m·K),较同温度下纯RL68H冷冻机油热导率增大9.13%。 Multiwalled carbon nanotube nano-oil with good stability were prepared by ultrasonic vibration methods. Under different temperatures(20—80℃),density and thermal conductivity of the multiwalled carbon nanotube nano-oil(MWCNTs mass fraction were 0.5%,1.0%,1.5%,2.0%) were investigated experimentally by using density meter and the thermal conductivity test system. The experimental results show that the density of the multiwalled carbon nanotube nano-oil increases with an increase of nanoparticles mass fractions, and decreases as temperature, while the thermal conductivity increases with nanoparticles mass fractions and temperature. Among them,the effect of the thermal conductivity increasing with mass fraction is more apparent than that with temperature. When the mass fraction of multi-walled carbon nanotubes is 2% and temperature is 80℃,the thermal conductivity of MWCNTs nano-oil could reach 0.1637W/(m·K),increased by 9.13% compared with that of pure RL68 H under the same temperature.
出处 《化工进展》 EI CAS CSCD 北大核心 2016年第5期1490-1493,共4页 Chemical Industry and Engineering Progress
基金 国家自然科学基金(51176124) 上海市曙光计划(跟踪)项目(10GG21) 上海市研究生创新基金(JWCXSL1101)项目
关键词 多壁碳纳米管 制备 纳米粒子 分散 密度 热导率 multiwalled carbon nanotube preparation nanoparticles dispersion density thermal conductivity
  • 相关文献

参考文献18

  • 1BI S S, GUO K, LIU Z G, et al. Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid[J]. Energy Conversion and Management, 2011,52(1).. 733-737.
  • 2SAIDUR R, LEONG K Y, MOHAMMAD H A. A review on applications and challenges of nanofluids[J]. Renewable and Sustainable Energy Reviews, 2011, 15 (3).. 1646-1668.
  • 3SABAREESH R K, GOBINATH N, SAJITH V, et al. Application of TiO2 nanoparticles as a lubricant-additive for vapor compressionrefrigeration systems--an experimental investigation[J]. International JoumalofRefrigeration, 2012, 35 (7): 1989-1996.
  • 4BI S S, SHI L, ZHANG L L. Application of nanoparticles in domestic refrigerators[J]. Applied Thermal Engineering, 2008, 28 (13/14): 1834-1843.
  • 5WANG R X, WU Q P, WU Y Z. Use of nanoparticles to make mineral oil lubricants leasible for use in a residential air conditioner employing hydro-fluorocarbons refrigerants[J] . Energy and Buildings, 2010, 42 (11): 2111-2117.
  • 6MURTHY V, PADMAABHAN V, PALANISAMY S. The use of TiO2 nanoparticles to reduce refrigerator IR-reversibility[J]. Energy Conversion and Management, 2012, 52 (1): 122-132.
  • 7GODSON L, RAJA B, LAL Mohan, et al. Enhancement of heat transfer using nanofluids -- an overview[J]. Renewable and Sustainable Energy Reviews, 2010, 14 (2): 629-641.
  • 8LEE K, WANG YH, CHEONG S, et al. Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil[J]. Curr. Appl. Phys., 2009, 9 (2): 128-131.
  • 9XING M B, WANG R X, YU J L. Application of fullerene C60 nane-oil for performance enhancement of domestic refrigerator compressors[J]. International Journal of Refrigeration, 2014, 40.. 398-403.
  • 10TRISAKRI V, WONGWlSES S. Critical review of heat transfer characteristics ofnanofluids[J]. Renew. Sustain. Energy Rev., 2007, 11: 512-523.

二级参考文献24

  • 1李泽梁,李俊明,王补宣.纳米悬浮液热导率测量及其预测模型的探讨[J].工程热物理学报,2006,27(1):112-114. 被引量:3
  • 2[1]Eastman J A,Choi U S,Li S,Thompson L J,Lee S.Enhanced Thermal Conductivity Through the Development of Nanofluids.In: Komarneni S,Parker J C,Wollenberger H J, eds. Proceedings of the Symposium on Nanophase and Nanocomposite Materials.Boston: Materials Research Society, Pittsburgh, PA, 1997. 3-11
  • 3[2]Xuan Y,Li Q.Heat Transfer Enhancement of Nanofluids.Int. J. of Heat and Fluid Flow, 2000, 21(1): 58-64
  • 4[3]Lee S, Choi U S, Li S, Eastman J A. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles.J. of Heat Transfer, 1999, 121: 280-289
  • 5[4]Eastman J A, Choi US, Li S. Development of Energy-efficient Nanofluids for Heat Transfer Applications.Report of Argonne National Laboratory
  • 6[5]Lee S,Choi U S.Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems.In: Kwon Y,Davis D,Chung H, eds. Recent Advances in Solids/Structures and Application of Metallic Materials.PVP-vol.342/MD-vol.72. New York: ASME, 1996.227-234
  • 7[6]Carslaw H S, Jaeger J C. Conduction of Heat in Solids.2nd ed. London: Oxford University Press, 1959. 510
  • 8[7]Maxwell J C. A Treatise on Electricity and Magnetism. 2nd ed. U K: Clarendon Press, 1881. 435
  • 9[8]Hamilton R L, Crosser O K.Thermal Conductivity of Heterogeneous Two-component Systems.Industrial and Engineering Chemistry Fundamentals, 1962, 1(3): 187-191
  • 10Bi Shengshan,Shi Lin,Zhang Lili. Application of nanoparticles in domestic refrigerators[J]. Applied Thermal Engineering,2008,28(13-14):1834-1843.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部