期刊文献+

一种未知环境下的局部动态概率路线图法 被引量:7

A Local Dynamic Probabilistic Roadmap Method for Unknown Environment
下载PDF
导出
摘要 针对未知环境中空中机器人路径规划问题,提出了一种适用于静态未知环境的路径规划方法。该方法在概率路线图法基础上,重新设计了在线重规划阶段,使得空中机器人不需更新整个规划空间,而是借助传感器感知环境信息,重构局部路线图,从而达到避障的目的。该方法可在规划空间中搜索出一条光滑的且能有效避开障碍物的可行路径。仿真结果表明,该方法复杂度低、实时性好,能快速规划出静态未知环境下空中机器人的可行路径。 In view of the aerial robots path planning problem in unknown environment, this paper proposed a path planning method for the static unknown environment. Based on the probabilistic roadmap method, the method redesigned the online replanning stage, and perceived its environment thought sensors, and used sensors' information to reconstruct the local roadmap. Thus it can make the aerial robots avoid the obstacle effectively and search out a smooth feasible path in configuration space without update the whole planning space. The simulation results show that this method have low complexity, good real-time performance and it can plan out a feasible path rapidly for aerial robots in static unknown environments.
出处 《航空科学技术》 2016年第4期69-73,共5页 Aeronautical Science & Technology
基金 贵州民族大学引进人才科研基金资助项目(15XRY007)~~
关键词 未知环境 概率路线图 空中机器人 路径规划 unknown environment probabilistic roadmap aerial robots path planning
  • 相关文献

参考文献10

  • 1Chowdhary G, Sobers D M Jr., Pravitra C. Self-contained autonomous indoor flight with ranging sensor navigation[J]. Journal of Guidance,Control,and Dynamics, 2012, 35(6): 1843-1854.
  • 2Bachrach A, Prentice S, He R, et al. RANGE-robust autonomous navigation in GPS-denied environments[J]. Journal of Field Robotics, 2011, 28(5):644-666.
  • 3Bachrach A, He R, Roy N. Autonomous flight in unknown indoor environments[J]. International Journal of Micro Air Vehicles, 2009, 1(4):217-228.
  • 4Shen S, Michael N, Kumar V. Autonomous indoor 3D exploration with a micro-aerial vehicle[C]//Proceedings of the International Conference on Robotics and Automation (ICRA), Is,1.]: IEEE, 2012:9-15.
  • 5刘贤敏,王琪,许书诚.改进型概率地图航迹规划方法[J].火力与指挥控制,2012,37(4):121-124. 被引量:5
  • 6Svestka P, M H Overmars. Motion planning for carlike robotsusing a probabilistic learning approach[J]. Intemational Journal of Robotics Research, 1997, 16(2): 119-143.
  • 7Amato N M, O B Bayazit, L K Dale, et al. OB PRM: an obstacle- based PRM for 3D workspaces[J].Found of Robotics, 1998.
  • 8Boor V, M H Overmars , A F van der Stappen. The gaussian sampling strategy for probabilistic roadmap planners[J].Utrecht University Thenetherlands,2001,2:1018-1023.
  • 9Hsu D, JIANG Tingting, John Reif, et al. The bridge test for sampling narrow passages with probabilistic roadrnap planners[C]// IEEE International Conference on Robotics and Automation, 2003.
  • 10钟建冬,苏剑波.基于概率路标的机器人狭窄通道路径规划[J].控制与决策,2010,25(12):1831-1836. 被引量:10

二级参考文献23

  • 1孙汉昌,朱华勇.基于概率地图方法的无人机路径规划研究[J].系统仿真学报,2006,18(11):3050-3054. 被引量:18
  • 2Kavraki L E, Svestka P, Latombe J-C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Trans on Robotics and Automation, 1996, 12(4): 566-580.
  • 3Bohlin R, Kavraki L E. Path planning using lazy PRM[C]. Proc of IEEE Int Conf on Robotics and Automation. San Francisco, 2000:521-528.
  • 4Hart L, Amato N M. A kinematics-based probabilistic roadmap method for closed chain systems[C]. Algorithmic and Computational Robotics: New Directions. Wellesley: A K Petters, 2001: 233-246.
  • 5Yang Y, Brock O. Adapting the sampling distribution in PRM planners based on an approximated medial axis[C]. Proc of IEEE Int Conf on Robotics and Automation. New Orleans, 2004: 4405-4410.
  • 6LaValle S M. Planning algorithms[M]. Cambridge: Cambridge University Press, 2006.
  • 7Barraquand J, Kavraki L E, Latombe J-C, et al. A random sampling scheme for path planning[J]. Int J of Robotics Research, 1997, 16(6): 759-774.
  • 8Hsu D, Latombe J-C, Motwani R. Path planning in expansive configuration spaces[J]. Int J of Computatational Geometry & Applications, 1999, 9(4/5): 495-512.
  • 9Nissoux C, Simeon T, Laumond J-P. Visibility-based probabilistic roadmaps[C]. Proc of IEEE/RSJ Int Conf on Intelligent Robots and Systems. Kyongju, 1999: 1316- 1321.
  • 10Boor V, Overmars M H, van der Stappen A E The Gaussian sampling strategy for probabilistic roadmap planners[C]. Proc of IEEE Int Conf on Robotics and Automation. Detroit, 1999: 1018-1023.

共引文献13

同被引文献49

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部