期刊文献+

基于秩极小化的压缩感知图像恢复算法 被引量:10

Compressed Sensing Image Reconstruction Algorithm Based on Rank Minimization
下载PDF
导出
摘要 本文将压缩感知图像恢复问题作为低秩矩阵恢复问题来进行研究.为了构建这样的低秩矩阵,我们采样非局部相似度模型,将相似图像块作为列向量构建一个二维相似块矩阵.由于列向量间的强相关性,因此该矩阵具有低秩属性.然后以压缩感知测量作为约束条件对这样的二维相似块矩阵进行低秩矩阵恢复求解.在算法求解的过程中,使用增广拉格朗日方法将受限优化问题转换为非受限优化问题,同时为了减少计算复杂度,使用基于泰勒展开的线性化技术来加速算法求解.实验表明该算法的收敛率、图像恢复性能均优于目前主流压缩感知图像恢复算法. The problem of compressed sensing image reconstruction is imagined as a low rank matrix recovery problem for research. In order to construct this low rank matrix,the nonlocal similarity model is exploited,and every similar image block is treated as a column vector in the matrix. The matrix has the low rank property because the column vectors are strong correlation. The algorithm model is to solve the low rank matrix recovery problem subject to the compressed sensing measurement constraints. In the solution of our proposed algorithm,the constrained optimization problem is converted to unconstrained optimization problem by the augmented lagrangian method,and then the alternating direction multiplier method is employed to solve it. To reduce the computational burden,the linear technique based on Taylor series expansion is taken to accelerate the proposed algorithm. The experimental results show that the subjective and objective performance of our proposed reconstruction algorithm is superior to the state of art reconstruction algorithms.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第3期572-579,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61001123 No.61327013 No.61471343) 广东省教育部产学研结合项目(No.2012B091000106) 中科院仪器装备项目(No.YZ201321)
关键词 压缩感知 秩最小化 图像恢复 非局部相似 compressed sensing rank minimization image recovery non-local similarity
  • 相关文献

参考文献33

  • 1Candes E,Romberg J,Tao T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J]. Information Theory,IEEE Transactions on,2006,52(2):489-509.
  • 2David L Donoho.Compressed sensing[J]. Information Theory,IEEE Transactions on,2006,52(4):1289-1306.
  • 3Bioucas-Dias JM,Figueiredo MA.A new TwIST:Two-step iterative shrinkage thresholding algorithms for image restoration[J]. Image Processing,IEEE Transactions on,2007,16(12):2992-3004.
  • 4Leonid I Rudin,Stanley Osher,Emad Fatemi.Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena,1992,60(11),259-268.
  • 5Jianhua Luo,Wanqing Li,Yuemin Zhu.Reconstruction From limited-angle projections based on δ-u spectrum analysis[J]. Image Processing,IEEE Transactions on,2010,19(1):131-140.
  • 6T Chan,S Esedoglu,F Park,A Yip.In Mathematical Models of Computer Vision[M]. Berlin Germany:springer verlag,2005.
  • 7A Chambolle,P L Lions.Image recovery via total variation minimization and related problems[J]. Numerische Mathematik,1997,76(3):167-188.
  • 8D Goldfarb,W Yin.Second-order cone programming methods for total variation based image restoration[J]. SIAM Journal on Scientific Computing,2005,27(2):622-645.
  • 9Candes E J,Tao T.Near-optimal signal recovery from random projections:Universal encoding strategies?[J]. Information Theory,IEEE Transactions on,2006,52(12):5406-5425.
  • 10Stephen Becker,Jerome Bobin,Emmanuel J Candes.NESTA:A fast and accurate first-order method for sparse recovery[J]. SIAM Journal on Imaging Sciences,2011,4(1):1-39.

同被引文献48

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部