期刊文献+

笛卡尔乘积有向图C_2×C_n与C_3×C_n的3-彩虹控制数

The 3-rainbow domination number of the Cartesian products digraph C_2×C_n and C_3×C_n
下载PDF
导出
摘要 设γ_(rk)(D)是有向图D的k-彩虹控制数且设C_m×C_n是m长有向圈C_m与n长有向圈C_n的笛卡尔乘积有向图.用构造的方法找到了笛卡尔乘积有向图C_2×C_n与C_3×C_n的3-彩虹控制数的上界,并证明了此上界恰好为其下界,即得到了γ_(r3)(C_2×C_n)与γ_(r3)(C_3×C_n)的精确值. Let γ(rk)(D)be the k-rainbow domination number of a digraph D,and let Cm ×Cn be the Cartesian product digraph of the directed cycle Cm of length mand the directed cycle Cn of length n.The upper bounds on 3-rainbow domination number of C2×Cn and C3×Cn are found by construction methods,which are exactly the lower bounds,that is,the exact values of γ(r3)(C2×Cn)and γ(r3)(C3×Cn)are obtained.
作者 郝国亮
出处 《延边大学学报(自然科学版)》 CAS 2016年第1期11-14,共4页 Journal of Yanbian University(Natural Science Edition)
基金 江西省教育厅科学技术研究项目(GJJ150561) 东华理工大学博士科研启动基金资助项目(DHBK2015319 DHBK2015320)
关键词 彩虹控制函数 彩虹控制数 笛卡尔乘积 rainbow dominating function rainbow domination number Cartesian product
  • 相关文献

参考文献11

  • 1Haynes T W,Hedetniemi S T,Slater P J.Fundamentals of Domination in Graphs[M].New York:Marcel Dekker,Inc,1998.
  • 2Haynes T W,Hedetniemi S T,Slater P J.Domination in Graphs:Advanced Topics[M].New York:Marcel Dekker,Inc,1998.
  • 3Desormeaux W J,Haynes T W,Henning M A,et al.Total domination in graphs with diameter 2[J].J Graph Theory,2014,75:91-103.
  • 4Fujita S,Furuya M.Rainbow domination numbers on graphs with given radius[J].Discrete Appl Math,2014,166:115-122.
  • 5Hao G,Qian J.On the sum of out-domination number and in-domination number of digraphs[J].Ars Combin,2015,119:331-337.
  • 6Ahangar H A,Amjadi J,Sheikholeslami S M,et al.Signed Roman edge domination numbers in graphs[J].Journal of Combinatorial Optimization,2016,31(1):333-346.
  • 7梁冰冰,皮晓明,刘焕平.树的3-彩虹控制数的上界[J].纯粹数学与应用数学,2015,31(2):210-220. 被引量:1
  • 8郝国亮,钱建国.有向图出控制数与入控制数的和[J].厦门大学学报(自然科学版),2015,54(3):351-353. 被引量:6
  • 9Koltun V,Papadimitriou C H.Approximately dominating representatives[J].Theoret Comput Sci,2007,371:148-154.
  • 10Shan E F,Cheng T C E,Kang L Y.Absorbant of generalized de Bruijn digraphs[J].Inform Process Lett,2007,105:6-11.

二级参考文献14

  • 1Ore O. Theory of Graphs [M]. USA: Amer. Math. Soc. Colloq. Publ., 1962.
  • 2Bresar B, Henning M A, Rall D F: Paired-domination of Cartesian products of graphs and rainbow domi- nation [J]. Electron. Notes Discrete Math., 2005,22:233-237.
  • 3Chang C J, Wu J J, Zhu X D. Rainbow domination on trees [J]. Discrete Appl. Math., 2010,158:8-12.
  • 4Bresar B, Sumenjak T K. On the 2-rainbow domination in graphs [J]. Discrete Appl. Math., 2007,155:2394- 2400.
  • 5Wu Y J, Rad N J. Bounds on the 2-rainbow domination number of graphs [J]. Graphs Combin., 2013,29:1125- 1133.
  • 6Shao Z H, Liang M L, Yin C, et al. On rainbow domination numbers of graphs [J]. Inf. Sci., 2014,254:225-234.
  • 7Fu Y. Dominating set and converse dominating set of a di- rected graph[J]. Amer Math Monthly, 1968,75 : 861-863.
  • 8Cai H,Liu J, Meng J. Domination number in iterated line digraph of a complete bipartite digraph[J]. Ars Combin, 2012,107:515-520.
  • 9Niepel L,Knor M. Domination in a digraph and in its re- verse[J]. Discrete Appl Math, 2009,157 : 2973-2977.
  • 10Niepel L,Knor M. Domination in the cross priduct of di- graphs[J]. Ars Combin, 2010,97 : 271-279.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部