期刊文献+

一类混合二阶q-对称差分边值问题解的存在性

Existence of solutions for a hybrid second-order q-symmetric difference boundary value problems
下载PDF
导出
摘要 研究了一类混合二阶q-对称差分方程解的存在性.首先分析了格林函数的性质,然后在Banach代数中利用满足Lipschitz条件的不动点定理,建立了该方程解存在的充分条件,最后通过举例验证了所得结论的合理性. We study the existence of solutions for a hybrid second-order q-symmetric difference equation.Firstly,some characteristics of the Green function were analyzed,then we obtained sufficient condition for the existence of solutions to this equation using fixed point theorems with Lipschitz condition in Banach algebra.Finally,the main result were verified by an example.
出处 《延边大学学报(自然科学版)》 CAS 2016年第1期15-18,共4页 Journal of Yanbian University(Natural Science Edition)
基金 国家自然科学基金资助项目(11161049) 吉林省教育厅"十二五"科技项目(吉教科合字[2015]第36号)
关键词 混合二阶q-对称差分 不动点定理 解的存在性 hybrid second-order q-symmetric difference fixed point theorem existence of solutions
  • 相关文献

参考文献9

  • 1Page D N.Information in black hole radiation[J].Phys Rev Lett,1993,71(23):3743-3746.
  • 2Youm D.q-deformed conformal quantum mechanics[J].Phys Rev D,2000,62(9):276-284.
  • 3Lavagno A,Swamy P N.q-deformed structures and nonextensive statistics:a comparative study[J].Phys A:Statistical Mechanics and its Applications,2002,305(1/2):310-315.
  • 4Boole G.Calculus of finite differences[J].Chelsea Publishing Company,1950,1(5):141-145.
  • 5Ernst T.The different tongues of q-calculus[J].Proc Est Acad Sci,2008,57(2):81-99.
  • 6Lavagno A,Gervino G.Quantum mechanics in q-deformed calculus[J].Journal of Physics:Conference Series,2009,174(174):233-239.
  • 7Brito DCAMC,Martins Natália.The q-symmetric variational calculus[J].Computers and Mathematics with Applications,2012,64(7):2241-2250.
  • 8徐佳宁,龚学,吴凡,侯成敏.一类二阶q-对称差分方程两点边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(3):189-195. 被引量:2
  • 9杨潇,白俊杰,葛琦.一类混合分数阶q-差分边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(1):21-24. 被引量:1

二级参考文献18

  • 1Ferreira R A C.Nontrivial solutions for fractional q-difference boundary value problems[J].Theory of Differential Equations,2010,70:1-10.
  • 2Zhao Yulin,Chen Haibo,Zhang Qiming.Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions[J].Advances in Difference Equations,2013,2013:1-15.
  • 3Zhao Yulin,Ye Guobing,Chen Haibo.Multiple positive solutions of a singular semipositione integral boundary value problem for fractional q-derivatives equation[J].Abstract and Applied Analysis,2013,2013:1-12.
  • 4Bashir Ahmad,Sotiris K Ntouyas.Fractional q-difference hybrid equations and inclusions with Dirichlet boundary conditions[J].Advances in Difference Equations,2014,2014:1-14.
  • 5Sun Shurong,Zhao Yige,Han Zhenlai.The existence of solutions for boundary value problems of fractional hybrid differential equations[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(12):4961-4967.
  • 6El-Shabed M,Hassan H A.Positive solutions of q-difference equation[J].Proc Amer Math Soc,2010,138:1733-1738.
  • 7Yang Wengui.Anti-periodic boundary value problems involving nonlinear fractional q-difference equations[J].Malaya Journal of Matematik,2013,4(1):107-114.
  • 8Jackson F H.On q-funtions and a certain difference operator[J].Trans Roy Soc Edin,1908,46:253-281.
  • 9Jackson F H.On q-definite integrals[J].Quart J Pure and Appl Math,1910,41:193-203.
  • 10Strominger A.Information in black hole radiation[J].Phys Rer Lett,1993,71:3743-3746.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部