期刊文献+

Metal intercalation-induced selective adatom mass transport on graphene

Metal intercalation-induced selective adatom mass transport on graphene
原文传递
导出
摘要 Recent experiments indicate that metal intercalation is a very effective method to manipulate the graphene-adatom interaction and control metal nanostructure formation on graphene. A key question is mass transport, i.e., how atoms deposited uniformly on graphene populate different areas depending on the local intercalation. Using first-principles calculations, we show that partially intercalated graphene, with a mixture of intercalated and pristine areas, can induce an alternating electric field because of the spatial variations in electron doping, and thus, an oscillatory electrostatic potential. This alternating field can change normal stochastic adatom diffusion to biased diffusion, leading to selective mass transport and consequent nucleation, on either the intercalated or pristine areas, depending on the charge state of the adatoms. Recent experiments indicate that metal intercalation is a very effective method to manipulate the graphene-adatom interaction and control metal nanostructure formation on graphene. A key question is mass transport, i.e., how atoms deposited uniformly on graphene populate different areas depending on the local intercalation. Using first-principles calculations, we show that partially intercalated graphene, with a mixture of intercalated and pristine areas, can induce an alternating electric field because of the spatial variations in electron doping, and thus, an oscillatory electrostatic potential. This alternating field can change normal stochastic adatom diffusion to biased diffusion, leading to selective mass transport and consequent nucleation, on either the intercalated or pristine areas, depending on the charge state of the adatoms.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第5期1434-1441,共8页 纳米研究(英文版)
基金 Acknowledgements We thank Dr. Jim Evans for many useful discussions. Work at Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, including a grant of computer time at the National Energy Research Scientific Computing Centre (NERSC) in Berkeley, CA under Contract No. DE-AC02-07CH11358. X. J. L. also acknowledges the support by the National Natural Science Foundation of China (No. 11574044) and Science and Technology Department of Jilin Province (No. 20150520088JH). H. Q. L. acknowledges support from National Natural Science Foundation of China (No. U1530401) and computational resource from the Beijing Computational Science Research Center.
关键词 graphene intercalation electrostatic potential selective adsorption first-principle calculation graphene,intercalation,electrostatic potential,selective adsorption,first-principle calculation
  • 相关文献

参考文献31

  • 1McChesney, J. L.; Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Gonz~lez, J.; Rotenberg, E. Extended van hove singularity and superconducting instability in doped graphene. Phys. Rev. Lett. 2010, 104, 136803.
  • 2Gierz, I.; Riedl, C.; Starke, U.; Ast, C. R.; Kern, K. Atomic hole doping of graphene. Nano Lett. 2008, 8, 4603-4607.
  • 3Li, Y. C.; Chen, P. C.; Zhou, G.; Li, J.; Wu, J.; Gu, B.-L.; Zhang, S. B.; Duan, W. H. Dirac fermions in strongly bound graphene systems. Phys. Rev. Lett. 2012, 109, 206802.
  • 4Hupalo, M.; Liu, X. J.; Wang, C. Z.; Lu, W. C.; Yao, Y. X.; Ho, K. M.; Tringides, M. C. Metal nanostructure formation on graphene: Weak versus strong bonding. Adv. Mater. 2011, 23, 2082-2087.
  • 5Liu, X. J.; Wang, C. Z.; Yao, Y. X.; Lu, W. C.; Hupalo, M.; Tringides, M. C.; Ho, K. M. Bonding and charge transfer by metal adatom adsorption on graphene. Phys. Rev. B 2011, 83, 235411.
  • 6Liu, X. J.; Hupalo, M.; Wang, C. Z.; Lu, W. C.; Thiel, P. A.; Ho, K. M.; Tringides, M. C. Growth morphology and thermal stability of metal islands on graphene. Phys. Rev. B 2012, 86, 081414(R).
  • 7Liu, X. J.; Wang, C. Z.; Hupa|o, M.; Lu, W. C.; Thiel, P. A.; Ho, K. M.; Tringides, M. C. Fe--Fe adatom interaction and growth morphology on graphene. Phys. Rev. B 2011, 84, 235446.
  • 8Liu, X. J.; Wang, C. Z.; Hupalo, M.; Lu, W. C.; Tringides, M. C.; Yao, Y. X.; Ho, K. M. Metals on graphene: Correlation between adatom adsorption behavior and growth morphology. Phys. Chem. Chem. Phys. 2012, 14, 9157-9166.
  • 9Binz, S. M.; Hupalo, M.; Liu, X. J.; Wang, C. Z.; Lu, W. C.; Thiel, P. A.; Ho, K. M.; Conrad, E. H.; Tringides, M. C. High island densities and long range repulsive interactions: Fe on epitaxial graphene. Phys. Rev. Lett. 2012, 109, 026103.
  • 10Liu, X. J.; Wang, C. Z.; Hupalo, M.; Lin, H.-Q.; Ho, K. M.; Tringides, M. C. Metal on graphene: Interactions, growth morphology, and thermal stability. Crystals 2013, 3, 79-111.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部