期刊文献+

Peptide recognition by functional supramolecular nanopores with complementary size and binding sites 被引量:1

Peptide recognition by functional supramolecular nanopores with complementary size and binding sites
原文传递
导出
摘要 The precise control of the conformations of biomolecules adsorbed on a surface at the single-molecule level is significant. However, it remains a huge challenge because of the complex structure and conformation diversity of biomolecules. Herein, a "nanopore-confined recognition" strategy is proposed to manipulate the adsorption of individual valinomycin molecules at room temperature through precise design of functionalized conjugated macrocycle (CPN8) supramolecular nanopores with complementary architectures and binding sites. We revealed that CPN8 prefers to selectively recognizing valinomycin with complementary architecture because of the strong synergistic interactions between the isopropyl groups of valinomycin and the amino groups of CPN8, with valinomycin- highly oriented pyrolytic graphite (HOPG) interactions. Our perspectives at the single-molecule level will provide valuable insights to improve the design of supramolecular nanopores for conformation-selective recognition of non-conjugated molecules. The precise control of the conformations of biomolecules adsorbed on a surface at the single-molecule level is significant. However, it remains a huge challenge because of the complex structure and conformation diversity of biomolecules. Herein, a "nanopore-confined recognition" strategy is proposed to manipulate the adsorption of individual valinomycin molecules at room temperature through precise design of functionalized conjugated macrocycle (CPN8) supramolecular nanopores with complementary architectures and binding sites. We revealed that CPN8 prefers to selectively recognizing valinomycin with complementary architecture because of the strong synergistic interactions between the isopropyl groups of valinomycin and the amino groups of CPN8, with valinomycin- highly oriented pyrolytic graphite (HOPG) interactions. Our perspectives at the single-molecule level will provide valuable insights to improve the design of supramolecular nanopores for conformation-selective recognition of non-conjugated molecules.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第5期1452-1459,共8页 纳米研究(英文版)
基金 Acknowledgements The authors gratefully acknowledged Prof. Chen Wang (National Center for Nanoscience and Technology, China) and Prof. Guocong Guo (Fujian Institute of Research on the Structure of Matter, CAS) for their helpful discussions and advice. This work was supported by the National Basic Research Program of China (No. 2012CB933001), the National Natural Science Foundation of China (Nos. 51173031, 21472029, 21303202, and 91127043), the program of Chinese Academy of Sciences (No. YZ201318), and the Open Project of State Key Laboratory of Supramolecular Structure and Materials (No. sklssm201607).
关键词 host-guest recognition nanopore-confined scanning tunnelingmicroscopy shape-persistent macrocyde supramolecular assembly host-guest recognition,nanopore-confined,scanning tunnelingmicroscopy,shape-persistent macrocyde,supramolecular assembly
  • 相关文献

参考文献24

  • 1Motiei, L.; Pode, Z.; Koganitsky, A.; Margulies, D. Targeted protein surface sensors as a tool for analyzing small populations of proteins in biological mixtures. Angew. Chem., Int. Ed. 2014, 53, 9289-9293.
  • 2Tew, G. N.; Scott, R. W.; Klein, M. L.; DeGrado, W. F. De novo design of antimicrobial polymers, foldamers, and small molecules: From discovery to practical applications. Acc. Chem. Res. 2010, 43, 30-39.
  • 3Foster, T. J.; Geoghegan, J. A.; Ganesh, V. K.; H66k, M. Adhesion, invasion and evasion: The many functions of the surface proteins of staphylococcus aureus. Nat. Rev. Microbiol. 2014, 12, 49-62.
  • 4Meyers, S. R.; Grinstaff, M. W. Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chem. Rev. 2012, 112, 1615-1632.
  • 5Grafahrend, D.; Heffels, K. H.; Beer, M. V.; Gasteier, P.; M611er, M.; Boehm, G.; Dalton, P. D.; Groll, J. Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat. Mater. 2011, 10, 67-73.
  • 6Castner, D. G.; Ratner, B. D. Biomedical surface science: Foundations to frontiers. Surf Sci. 2002, 500, 28~50.
  • 7Liao, W. S.; Cheunkar, S.; Cao, H. H.; Bednar, H. R.; Weiss, P. S.; Andrews, A. M. Subtractive patterning via chemical lift-off lithography. Science 2012, 337, 1517-1521.
  • 8MacBeath, G.; Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760-1763.
  • 9Yang, H.; Yuan, B,; Zhang, X.; Scherman, O. A. Supra- molecular chemistry at interfaces: Host-guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 2014, 47, 2106-2115.
  • 10Li, M.; Deng, K.; Lei, S. 13.; Yang, Y. L.; Wang, T. S.; Shen, Y. T.; Wang, C. R.; Zeng, Q. D.; Wang, C. Site- selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface Angew. Chem., lnt. Ed. 2008, 47, 6717~5721.

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部