期刊文献+

基于一种最优电流分解方法的电力调节静态补偿特性分析 被引量:1

Analysis of power conditioning static compensation characteristic based on an optimal current decomposition method
下载PDF
导出
摘要 基于波兰学者提出的一种优化方法,结合电力系统能量传输特性,通过构造拉格朗日函数的方法,分别在单相、三相电路的情形下,推导了特定约束条件下最优电流及各电流分量的表达形式,并给出了最优电流的检测算法;通过仿真分析,验证了该优化方法的补偿效果,该方法明显提高了电路的能量传输效率,并且解释了电源含内阻情况下Fryze理论电流分解的局限性。 Based on an optimization method proposed by Polish scholars,this paper combines the energy transfer characteristics of power system,it derives the expression of optimal current and decomposes the current components in single- phase and three- phase circuitsthrough constructing a Lagrange function,as well as provides the detection algorithm for optimal current. By the simulation analysis,this paper verifies the compensation effect of the optimization method,the method can improve the efficiency of energy transfer in circuit noticeably. Finally,the method can explain the limitations of Fryze theory in current decomposition when voltage sources have internal impedance.
出处 《电测与仪表》 北大核心 2016年第8期19-25,44,共8页 Electrical Measurement & Instrumentation
基金 国家自然科学基金青年基金资助项目(51207051)
关键词 补偿特性 电力调节 功率理论 优化方法 拉格朗日函数 compensation characteristics power conditioning power theory optimization method Lagrange function
  • 相关文献

参考文献15

  • 1肖湘宁,罗超,陶顺.电气系统功率理论的发展与面临的挑战[J].电工技术学报,2013,28(9):1-10. 被引量:37
  • 2Budeanu C. Puissances r~actives at fictives [ M ]. Institute National Roumain pour L' t~tude de L' Am6nagement et de 1' utilisation des sources d' t~nergie, 1927.
  • 3Fryze S. Active, reactive and apparent power in circuits with non-sinu- soidal voltage and current[ J]. Przeglad Elektrotechniczn, 1931,7-8.
  • 4Shepherd W, Zakikhani P. Suggested definition of reactive power for nonsinusoidalsystems[ J]. Proceedings of the Institution of Electrical Engineers, 1972, 119 (9) : 1361-1362.
  • 5Kusters NL, Moore WJM. On the definition of reactive power under nonsinusoidalconditions [ J ]. IEEE Transactionson Power Apparatus and Systems, 1980, 99 (5) : 1845-1854.
  • 6Czamecki LS. Currents' physical components(CPC) concept : a fun- damental of power theory [ C ]. International school on nonsinusoidal current and compensation, 2008.
  • 7Czarnecki LS. Scattered and Reactive Current, Voltage, and Power in CircuitswithNonsinusoidalWav on [ J ]. IEEE Transactions on Power Electronics, 1991, 38(3) : 563-567.
  • 8Czarnecki LS, Swietlieki T. Powers in Nonsinusoidal Networks: Their Interpretation, Analysis, and Measurement[ J]. IEEE Transactions on Power Electronics, 1990, 39(2) : 340-346.
  • 9Czamecki LS. 1)istortionPowerinSystems withNonsinusoidalVoltage [ J ]. IEEE Proceedings of Electric Power Applications, 1992, 139 ( 3 ) : 276- 280.
  • 10Czamecki LS. Minimization of ReactivePowerunderNonsinusoidal Condi- tions[ J ]. IEEE Transactions on Power Electronics, 1987, 36 ( 1 ) : 18- 22.

二级参考文献33

  • 1AKAGI Hirofumi, WATANABE Edson Hirokazu, AREDES Mauricio.瞬时功率理论及其在电力调节中的应用[M].徐政,译.北京:机械工业出版社,2009.
  • 2IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions [S]. IEEE Std 1459-2010, 2010: 1-40.
  • 3Budeanu C. Puissances reactives at fictives[M]. Institut National Roumain pour L'Etude de L'Amenagement et de l'utilisation des sources d'Energie, 1927.
  • 4Fryze S. Active, reactive and apparent power in circuits with non-sinusoidal voltage and current[J]. Przegl. Elekrrorech, 1931 : 7-8.
  • 5Buchholz F. Das Begriffsystem Rechtleistung, Wirkleistung, totale Blindleistung[M]. Selbstverlag Munchen, 1950.
  • 6Depenbrock M. The FBD-method, a generally applicable tool for analyzing power relations[J]. IEEE Transactions on Power Systems, 1993, 8(2): 381-387.
  • 7Shepherd W, Zakikhani P. Suggested definition of reactive power for nonsinusoidal systems [J]. Proceedings of the Institution of Electrical Engineers, 1972, 119(9): 1361-1362.
  • 8Sharon D. Reactive-power definitions and power-fact or improvement in nonlinear systems[J]. Proceedings of the Institution of Electrical Engineers, 1973, 120(6) 704-706.
  • 9Kusters N L, Moore W J M. On the definition of reactive power under non-sinusoidal conditions[J]. IEEE Transactions on Power Apparatus and Systems, 1980, 99(5): 1845-1854.
  • 10Page C H. Reactive power in nonsinusoidal situations[J]. IEEE Transactions on Instrumentation and Measurement, 1980, 29(4): 420-423.

共引文献36

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部