期刊文献+

基于符号网络的两阶段融合社区发现算法 被引量:1

Two-stage Fusion Community Detection Algorithm Based on Signed Social Networks
下载PDF
导出
摘要 目前针对符号网络社区发现研究越来越受到重视,CRA(Clustering Re-clustering Algorithm)算法代表比较流行的一种思路,即将社区划分过程分为两个阶段:第一步先删除负边,对剩余网络用传统社区发现算法进行社区划分;第二步再用符号网络特定社区质量评价函数调整分区.此类算法由于没有充分考虑负边信息而导致了划分不正确的问题.本文通过引入网络正密度,提出一种两阶段融合算法TFCRA(Two-stage Fusion Clustering Re-clustering Algorithm),在社区划分过程中,不再删除负边,通过网络正密度和社区正密度的比较调整带负边的顶点的归属.实验证明,TFCRA能解决CRA算法存在的对某些网络无法划分和从不同顶点出发可能导致划分出错的问题. The current study on signed social networks community detection is attracting more and more attention. CRA ( Clustering Re-clustering Algorithm) algorithm is more popular thinking, the community detection process is divided into two stages: The first stage deletes negative edges, divides the remaining network with traditional community detection algorithm. The second stage adjusts the communities by evaluation function of signed social networks. Because the negative edge information is not fully taken into account,this idea may not correctly divide the network. This paper proposes a two-stage fusion algorithm TFCRA ( Two-stage Fusion Clustering Re-clustering Algorithm) by introducing the network positive density. In the process of community division, no longer remove negative edges, the assignment of vertices with negative edges shall be determined by comparing the value of network positive density with community positive density. The experiments show that TFCRA algorithm solves the problems existing in CRA,including network division failure and wrong detection starting from different vertices.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第5期915-920,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61472340)资助 国家自然科学青年基金项目(61303040 71271186)资助 河北省自然科学基金面上项目(G2015203242)资助
关键词 社区发现 符号社会网络 社区正密度 聚类 community detection signed social networks network positive density cluster
  • 相关文献

参考文献4

二级参考文献20

  • 1倪庆剑,邢汉承,张志政,王蓁蓁,文巨峰.粒子群优化算法研究进展[J].模式识别与人工智能,2007,20(3):349-357. 被引量:67
  • 2杨楠,林松祥,高强,孟小峰.一种从马尔可夫聚类簇发现潜在WEB社区特征的方法[J].计算机学报,2007,30(7):1086-1093. 被引量:5
  • 3Chi Y, Song X, Zhou D, et al. Evolutionary spectral clustering by incorporating temporal smoothness[C]. KDD 2007,153-162.
  • 4Verma D. Meila M A comparison of spectral clustering algorithms [R]. UW CSE Technical Report 03-05-01,2003.
  • 5YANG B,CHEUNG W,LIUJ.Community mining from signed so-cial networks. IEEE Transactions on Knowledge and Data Engi-neering . 2007
  • 6Albert R,Jeong H,Barabusi AL.Diameter of the world-wide web. Nature . 1999
  • 7Yang B,,Liu J,Feng J F,et al.On modularity of social network communities:the spectral characterization. Proceedings of2008IEEE/WIC/ACM Joint Conferences on Web Intelligence and Intelligent Agent . 2008
  • 8Palla,G,Derenyi,I,Farkas,I,Vicsek,T.Uncovering the overlapping community structure of complex networks in nature and society. Nature . 2005
  • 9Guimera R,Amaral LAN.Functional cartography of complex metabolic networks. Nature . 2005
  • 10Flake GW,Lawrence SR,Giles CL,et al.Self-organization and identification of web communities. IEEE Computer . 2002

共引文献54

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部