摘要
目前针对符号网络社区发现研究越来越受到重视,CRA(Clustering Re-clustering Algorithm)算法代表比较流行的一种思路,即将社区划分过程分为两个阶段:第一步先删除负边,对剩余网络用传统社区发现算法进行社区划分;第二步再用符号网络特定社区质量评价函数调整分区.此类算法由于没有充分考虑负边信息而导致了划分不正确的问题.本文通过引入网络正密度,提出一种两阶段融合算法TFCRA(Two-stage Fusion Clustering Re-clustering Algorithm),在社区划分过程中,不再删除负边,通过网络正密度和社区正密度的比较调整带负边的顶点的归属.实验证明,TFCRA能解决CRA算法存在的对某些网络无法划分和从不同顶点出发可能导致划分出错的问题.
The current study on signed social networks community detection is attracting more and more attention. CRA ( Clustering Re-clustering Algorithm) algorithm is more popular thinking, the community detection process is divided into two stages: The first stage deletes negative edges, divides the remaining network with traditional community detection algorithm. The second stage adjusts the communities by evaluation function of signed social networks. Because the negative edge information is not fully taken into account,this idea may not correctly divide the network. This paper proposes a two-stage fusion algorithm TFCRA ( Two-stage Fusion Clustering Re-clustering Algorithm) by introducing the network positive density. In the process of community division, no longer remove negative edges, the assignment of vertices with negative edges shall be determined by comparing the value of network positive density with community positive density. The experiments show that TFCRA algorithm solves the problems existing in CRA,including network division failure and wrong detection starting from different vertices.
出处
《小型微型计算机系统》
CSCD
北大核心
2016年第5期915-920,共6页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(61472340)资助
国家自然科学青年基金项目(61303040
71271186)资助
河北省自然科学基金面上项目(G2015203242)资助
关键词
社区发现
符号社会网络
社区正密度
聚类
community detection
signed social networks
network positive density
cluster