期刊文献+

Cocos2d-x游戏引擎的GPU功耗优化策略 被引量:3

GPU Power Optimization Strategy for Cocos2d-x Game Engine
下载PDF
导出
摘要 游戏是移动设备上功耗很高的一类应用,降低游戏功耗对提升移动设备的续航时间有重要意义.本文在Cocos2d-x-3.2游戏引擎上分析游戏画面与GPU渲染时间之间的关系,提出一种计算模型预测每一帧画面的GPU渲染时间,并利用该模型实现一种DVFS算法——"onframe"算法来降低GPU的功耗."onframe"算法根据每一帧的预测渲染时间和游戏的设计帧率,计算满足每一帧性能需求的最优GPU频率.最后通过实验将"onframe"算法与Android系统提供的系统级GPU功耗优化策略进行比较,表明"onframe"算法可以更有效地降低GPU功耗并且不对游戏性能产生明显影响. Games are high-power applications for mobile devices, so that reducing their power consumption is important for enhancing mobile devices' battery life. This paper analyzes the relationship between game screen and corresponding GPU rendering time on the Cocos2d-x-3.2,and proposes a model to estimate the GPU rendering time of each frame. Based on this model, a DVFS algorithm named "onframe" is implemented to reduce the power consumption of GPU. The "onframe" algorithm calculates the best GPU frequency according to the predicted rendering time and the fps of game. Experiments illustrate that,compared to the system-level power optimization strategy in android GPU driver,the "onframe" algorithm can reduce GPU power consumption more efficiently without any significant impact on game performance.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第5期1112-1116,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61379040 61272131)资助 江苏省自然科学基金项目(SBK2012194)资助
关键词 动态电压频率调节 游戏 GPU Cocos2d-x DVFS ( Dynamic voltage and frequency scaling ) game GPU Cocos2d-x
  • 相关文献

参考文献3

二级参考文献67

  • 1骆祖莹.芯片功耗与工艺参数变化:下一代集成电路设计的两大挑战[J].计算机学报,2007,30(7):1054-1063. 被引量:17
  • 2http://ati, amd. com/technology/streamcomputing/product_ FireStream_9250. html.
  • 3Luebke D, Harris M, Govindaraju N, Lelohn A, HoustonM, Owens J, Segal M, Papakipos M, Buck I. GPGPU General-purpose computation on graphics hardware//Pro ceedings of the 2006 ACM/IEEE Conference on Supercom puting(SC'06). Tampa, Florida, 2006.
  • 4Fan Xiaobo, Ellis Carla S, Lebeck Alvin R. The synergy be-tween power aware memory systems and processor voltage scaling//Proceedings of the Workshop on Power-AwareComputer Systems ( PACS-03 ). New York, NY, USA, 2003: 164-179.
  • 5Hong S, Kim H. An analytical model for a GPU architecturewith memory-level and thread-level parallelism awareness// Proceedings of the 36th Annual International Symposium onComputer Architecture (ISCA'09). Austin, TX, USA, 2009:152-163.
  • 6NVIDIA Corporation. CUDA Programming Guide, Version 2.1.
  • 7Burd T, Brodersen R. Design issues for dynamic voltagescaling//Proceedings of the 2000 International Symposium on Low Power Electronics and Design (ISLPED' 00). Rapallo, Italy, 2000:9-14.
  • 8Bakhoda Ali, Yuan George, Fung Wilson W L, Wong Henry, Aamodt "For M. Analyzing CUDA workloads using adetailed GPU simulator//Proceedings of the IEEE Interna tional Symposium on Performance Analysis of Systems and Software (ISPASS). Boston, MA, 2009:163-174.
  • 9Brooks D, Tiwari V, Martonosi M. Wattch: A framework for architectural-level power analysis and optimizations//Proceedings of lhe 271h International Symposium on Computer Architecture ( ISCA ). Vancouver, British Columbia, Canada, 2000; 83-94.
  • 10Ramani K, Ibrahim A, Shimizu D. PowerRed.- A flexible modeling framework for power efficiency exploration inGPUs//Proceedings of the Workshop on General Purpose Processing on Graphics Processing Units. New York, NY, USA, 2007:185-192.

共引文献20

同被引文献26

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部