期刊文献+

温度对预混合乙烯火焰碳烟生成的影响 被引量:4

Effect of Temperature on Soot Formation in Premixed Ethylene Flames
下载PDF
导出
摘要 基于碳烟测试标准方法(预混合稳定滞止火焰法),研究火焰温度对预混合乙烯火焰中碳烟生成的影响,为发展和验证碳烟模型提供标准试验依据.试验表明:碳烟生成对火焰温度非常敏感.火焰温度约在1,650~1,750,K范围内对碳烟生成更有利,碳烟体积分数更高;在此范围之外,火焰温度对碳烟生成都有一定的限制作用;当火焰温度约为1,580,K时,反应动力学速率较低,碳烟成核与长大缓慢,碳烟体积分数较低;当火焰温度约为1,872,K时,尽管此时碳烟成核反应动力学速率较高,但受碳烟成核过程热力学可逆性的影响,碳烟成核与长大显著受限,碳烟体积分数显著降低. To provide a canonical data sets for the improvement and validation of soot models,effects of flame temperature on soot formation in premixed ethylene flames was studied based on the standard method of soot measurement(premixed stabilized stagnation flame method).Results show that soot formation is highly sensitive to flame temperature.Soot volume fraction is higher at flame temperature range of 1,650-1,750,K,the best environment for soot growth.Beyond this range,soot formation is somewhat controlled.At flame temperature of 1,580,K,the lower rate of soot nucleation and growth caused by lower kinetic reaction rate leads to a lower soot volume fraction.At flame temperature of 1,872,K,although the kinetic reaction rate of soot nucleation is higher,soot volume fraction is significantly decreased because soot nucleation and growth are severely limited by the thermodynamic reversibility of the nucleation process.
出处 《内燃机学报》 EI CAS CSCD 北大核心 2016年第2期156-162,共7页 Transactions of Csice
基金 国家自然科学基金资助项目(51210010) 国家重点基础研究发展计划(973)资助项目(2013CB228502)
关键词 预混合火焰 乙烯 火焰温度 碳烟 premixed flame ethylene flame temperature soot
  • 相关文献

参考文献20

  • 1Kennedy I M. Models of soot formation and oxidation [J]. Progress in Energy and Combustion Science, 1997, 23 (2) : 95-132.
  • 2Richter H, Howard J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot--A review of chemical reaction pathways [J]. Progress inEnergy and Combustion Science, 2000,26 (4-6) : 565- 608.
  • 3McEnally C S, Pfefferle L D, Atakan B, et al. Studies of aromatic hydrocarbon formation mechanisms in flames:Progress towards closing the fuel gap [J]. Progress in Energy and Combustion Science, 2006, 32 (3) : 247-294.
  • 4D'Anna A. Combustion-formed nanoparticles [J]. Proceedings of the Combustion Institute, 2009,32 (1) : 593-613.
  • 5Wang H. Formation of nascent soot and other condensed- phase materials in flames [J]. Proceedings of the Combustion Institute, 2011,33 (1) : 41-67.
  • 6Abid A D, Camacho J, Sheen D A, et al. Quantitative measurement of soot particle size distribution in premixed flames - the bumer-stabilized stagnation flame approach [J]. Combustion and Flame,2009, 156 (10) : 1862-1870.
  • 7Camacho J, Liu C, Gu C, et al. Mobility size and mass of nascent soot particles in a benchmark premixed ethylene flame [J]. Combustion and Flame, 2015, 162 (10) :3810-3822.
  • 8Lindstedt R P, Waldheim B B O. Modeling of soot particle size distributions in premixed stagnation flow flames [J]. Proceedings of the Combustion Institute, 2013,34(1) : 1861-1868.
  • 9Puduppakkam K V, Modal A U, Naik C V, et al. A soot chemistry model that captures fuel effects [C] // ASME Turbo Expo. Dtsseldorf, Germany, 2014 , 2014V04BTA055.
  • 10Eaves N, Dworkin S, Thomson M J. The important of reversibility in modeling soot nucleation and condensation processes [J]. Proceedings of the Combustion Institute, 2015, 35 (2) : 1787-1794.

同被引文献18

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部