期刊文献+

基于自适应迭代最小二乘的叶片后缘参数估计 被引量:4

Parameter Estimation of Blade Trailing Edge Based on Adaptive and Iterative Least-Square
下载PDF
导出
摘要 为了解决燃气轮机叶片后缘轮廓参数辨识的难题,提出了自适应迭代最小二乘法。通过三维激光测量系统得到叶片后缘三维轮廓点云数据,测量精度±5μm,使用该算法对后缘所有截面进行拟合,拟合精度±0.001 mm。通过在不同程度高斯噪声下仿真后缘测量数据,对比分析了两种算法的拟合效果。自适应迭代最小二乘法对叶片后缘轮廓的高精度、高效率参数辨识有着重要意义。 In order to solve the problem of the parameter identification of gas turbine blade trailing edge profile,an adaptive and iterative least-square is presented.The blade trailing edge three dimensional profile point cloud data are obtained through three-dimensional laser measurement system,the measuring precision is ±5μm,the algorithms is used to fit all cross-section of trailing edge,the fitting precision is ±0.001 mm.The results of two kinds of algorithms are compared and analyzed based on simulation measured-data of trailing edge under varying degrees of Gaussian noise.Adaptive and iterative least-square is of great significance to the highprecision and efficient parameter identification of gas turbine blade trailing edge profile.
出处 《测控技术》 CSCD 2016年第4期39-42,共4页 Measurement & Control Technology
基金 国家自然科学基金(11072063)
关键词 叶片后缘 最小二乘法 三维激光测量 参数辨识 trailing edge of blades least-square three-dimensional laser measurement parameter identification
  • 相关文献

参考文献9

  • 1李华伟,申作春,覃银红,鲍鸿,周延周.相位测量轮廓术应用于叶片测量[J].航空动力学报,2012,27(2):275-281. 被引量:19
  • 2赖文敬,鲍鸿,白玉磊,申作春,周延周.叶片三维轮廓测量点云数据高精度多角度融合[J].航空动力学报,2015,30(3):665-671. 被引量:8
  • 3Watson G A. Least squares fitting of circles and ellipses to measured data [ J ]. BIT Numerical Mathematics, 1999,39 ( 1 ) : 176 - 191.
  • 4Kasa I. A circle fitting procedure and its error analysis [ J ]. IEEE Transactions on Instrumentation and Measurement, 1976,25(3) :8 - 14.
  • 5Moura L, Kitney R. A direct method for least-squares circle fitting [ J ]. Computer Physics Communications, 1991,64 ( 1 ) : 57 - 63.
  • 6Chernov N, Lesort C. Least squares fitting of circles [ J ]. Journal of Mathematical Imaging and Vision, 2005,23 ( 3 ) : 239 - 252.
  • 7Ahn S J, Rauh W, Warnecke H J. Leastsquares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and pa- rabola[ J]. Pattern Recognition,2001,34(12) :2283 - 2303.
  • 8Kanatani K, Rangarajan P. Hyper least squares fitting of cir- cles and ellipses [ J ]. Computational Statistics and Data A- nalysis ,2011,55 (6) :2197 - 2208.
  • 9刘珂,周富强,张广军.半径约束最小二乘圆拟合方法及其误差分析[J].光电子.激光,2006,17(5):604-607. 被引量:81

二级参考文献34

共引文献102

同被引文献37

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部