期刊文献+

面向IPv4/IPv6云计算虚拟机迁移实时功耗建模研究 被引量:1

Modeling Research on Cloud Computing Virtual Machine Migration Real-Time Energy Faced to IPv4/IPv6
下载PDF
导出
摘要 随着当前云计算技术的飞速发展,云计算平台资源池规模亦不断膨胀,带来了高功耗问题。云计算平台的功耗优化已成为业界关注的焦点。针对IPv4/IPv6异构网络进行云计算平台资源池功耗度量研究,分析CPU功耗变化与CPU计算密度关系结合线性回归方法建立数学模型,针对数据关系确定数学模型参数值,并依据实验结果分析了实验数据,进一步验证了模型的正确性,该模型的建立为云计算平台功耗优化提供理论依据。 With the rapid development of cloud computing,the explosion of cloud computing platform resource pool brings serious high energy consumption problem.Minimizing the energy measuring is one of the most important study areas in cloud computing.A energy measuring research to cloud computing platform resource pool is conducted in IPv4/IPv6 heterogeneous network,the mathematical model is built by analyzing CPU energy measuring changes and CPU calculation density relationship and combining the linear regression method,the parameter value of mathematical model is determinated for data relationship,and experimental data is analyzed for experimental results,which further verifies the correctness of the model.The model provides a theoretical basis for cloud computing platform energy measuring optimization.
作者 陈俊 张文光
出处 《测控技术》 CSCD 2016年第4期89-93,97,共6页 Measurement & Control Technology
基金 国家自然科学基金项目(61309006) 贵州省科学技术基金项目(黔科合协字师大LH字[2014]7040号) 贵州师范大学资助博士科研项目(2013)
关键词 IPV4 IPV6 云计算 虚拟机 功耗 IPv4 IPv6 cloud computing virtual machine energy consumption
  • 相关文献

参考文献10

  • 1Jennifer Y, Biswanath M, Dipak G. Wireless sensor network survey [ J ]. Computer Networks, 2008, 52 ( 12 ) : 2292 - 2330.
  • 2Bahsoon R. Green cloud:towards a framework for dynamic self-optimization of power and dependability requirements in green cloud architectures[ C ]//Proceedings of the 4th Euro- pean Conference on Software Architecture ( ECSA 2010 ). 2010.510 -514.
  • 3Kumar K, Lu Y H. Cloud computing for mobile users : can of_ floading computation save energy? [ J ]. Computer, 2010,43 (4) :51 -56.
  • 4Singgh M, Prasanna V K. Energy-optimal and enery-blaneed sorting in a single-hop wireless sensor network [ C ]//Pro- ceedings of the First IEEE International Conference on Per- vasive Computing and Communications. 2003.
  • 5Kan Baoqiang,Cai Li,Zhu Hongsong,Xu Yongjun.Accurate energy model for WSN node and its optimal design[J].Journal of Systems Engineering and Electronics,2008,19(3):427-433. 被引量:16
  • 6Song S W, Ge R, Feng X Z,et al. Energy, profiling and analy- sis of the HPC challenge benchmarks[J]. International Jour- nal of" High Performance Computing Applications, 2009,23 (3) :265 -276.
  • 7Ge R, Feng X Z, Song S W,et al. Powerpack :energy profiling and analysis of high-performance systems and applications [ J ]. IEEE Transactions on Parallel and Distributed Systems, 2010,21 (5) :658 -671.
  • 8A|zaid H. Secure data aggregation in wireless sensor networks [D ]. Brisbane : Queensland University of Technology ,2011.
  • 9宋杰,李甜甜,闫振兴,那俊,朱志良.一种云计算环境下的能效模型和度量方法[J].软件学报,2012,23(2):200-214. 被引量:70
  • 10Heinzelman W B, Chandrakasan A P, Balakrishnan H. An application-specific protocol architecture for wireless mi- erosensor networks [J ]. IEEE Transactimls on Wireless Communications, 2002,1 (4) :660 - 667.

二级参考文献28

  • 1ZHAO Lei,ZHANG Wei-Hong,XU Chao-Nong,XU Yong-Jun,LI Xiao-Wei.Energy-aware System Design for Wireless Sensor Network[J].自动化学报,2006,32(6):892-899. 被引量:2
  • 2Chert G, He WB, Liu J, Nath S, Rigas L, Xiao L, Zhao F. Energy-Aware server provisioning and load dispatching for connection- intensive Internet services. In: Crowcroft J, Dahlin M, eds. Proc. of the 5th USENIX Syrup. on Networked Systems Design and Implementation (NSDI). San Francisco: USENIX Association, 2008. 337-350.
  • 3Urgaonkar B, Shenoy PJ, Chandra A, Goyal P, Wood T. Agile dynamic provisioning of multi-tier Internet applications. Trans. on Autonomous and Adaptive Systems, 2008,3(1):1-39. [doi: 10.1145/1342171.1342172].
  • 4Orgerie AC, Lef~vre L, Gelas JP. Save Watts in your grid: Green strategies for energy-aware framework in large scale distributed systems. In: Proc. of the 14th Int'l Conf. on Parallel and Distributed Systems (ICPADS 2008), Melbourne: IEEE, 2008. 171-178. Idol: 10.1109/ICPADS.2008.97].
  • 5IBM proj oct big green, http://www-03.ibm.com/press/us/en/pressrelease/21524.wss.
  • 6Using virtualization to improve data center efficiency, http://www.thegreengrid.org/Global/Content/white-papers/Using- Virtualization-to-Improve-Data-Center-Efficiency.
  • 7Rivoire S, Shah MA, Ranganathan P, Kozyrakis C. JouleSort: A balanced energy-efficiency benchmark. In: Chan CY, Qoi BC, Zhou A, eds. Prec. of the ACM SIGMOD Int'l Conf. on Management of Data. B~ijing: ACM Press, 2007. 365-376. Idol: 10.1145/ 1247480.1247522].
  • 8Bahsoon R. Green cloud: Towards a framework for dynamic self-optimization of power and dependability requirements in green cloud architectures. In: Babar MA, Gorton I, eds. Proe. of the 4th European Conf. on Software Architecture (ECSA 2010). Copenhagen, 2010. 510-514.
  • 9Kumar K, Lu YH. Cloud computing for mobile users: Can offloading computation save energy? IEEE Computer, 2010,43(4): 51-56. [doi: 10.1109/MC.2010.98].
  • 10Kelenyi I, Nurminen JK. CloudTorrent--Energy-Efficient BitTorrent content sharing for mobile devices via cloud services. In: Proc. of the 7th IEEE on Consumer Communications and Networking Conf. (CCNC). 2010. 1-2.

共引文献84

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部