期刊文献+

基于混合量子粒子群算法的DFIG参数辨识 被引量:1

Hybrid Quantum-Behaved Particle Swarm Optimization for Parameter Identification of DFIG
下载PDF
导出
摘要 为了确保双馈感应发电机(Doubly Fed Induction Generator,DFIG)参数的准确性,提高发电机的控制性能,提出了基于混合量子粒子群算法的参数辨识方法。在dq坐标系下建立了DFIG参数辨识的模型。对量子粒子群算法进行改进并与模拟退火算法进行混合,得到混合量子粒子群辨识算法。在Matlab/Simulink中将所提出的混合算法用于DFIG的参数辨识,并与粒子群算法、量子粒子群算法和改进量子粒子群算法进行了对比验证。仿真结果表明所提出的算法能提高定子电阻、定子电感、转子电阻、转子电感以及定转子互感五个参数的辨识精度。 In order to ensure the accuracy of the doubly-fed wind power generator(DFIG) and improve the control performance of the generator, a hybrid quantum-behaved particle swarm optimization for parameter identification was proposed. A parameter identification model of DFIG at dq coordinate was established. Quantum-behaved particle swarm optimization(QPSO) was improved and then mixed with simulated annealing(SA) algorithm. The proposed algorithm was compared with particle swarm optimization(PSO), QPSO and improved QPSO, which were applied to parameter identification of DFIG in Matlab/Simulink. Simulation results show that the proposed algorithm can improve the identification accuracy of the five parameters including stator resistance, stator inductance, rotor resistance, rotor inductance, and mutual inductance of stator and rotor.
出处 《系统仿真学报》 CAS CSCD 北大核心 2016年第5期1054-1062,共9页 Journal of System Simulation
基金 国家高技术研究发展计划(2013AA040405)
关键词 双馈风力发电机 参数辨识 量子粒子群算法 模拟退火算法 混合算法 DFIG parameter identification QPSO SA hybrid algorithm
  • 相关文献

参考文献16

  • 1Asmine M, Brochu J, Fortmann J, et al. Model Validation for Wind Turbine Generator Models [J]. IEEE Transactions on Power Systems (S0885-8950), 2011, 26(3): 1769-1782.
  • 2Xiaobing Kong, Xiangjie Liu, Kwang Y Lee. Data-driven Modeling of A Doubly Fed Induction Generator Wind Turbine System Based on Neural Networks [J]. lET Renewable Power Generation (S1752-1416), 2014, 8(8): 849-857.
  • 3Zubia I, Zatarain A, Alcalde C, et al. In Situ Electrical Parameter Identification Method for Induction Wind Generators [J]. IET Electric Power Applications (S1751-8660), 2011, 5(7): 549-557.
  • 4Dirik H, Gezegin C, Ozdemir M. A Novel Parameter Identification Method for Single-Phase Transformers by Using Real-Time Data [J]. IEEE Transactions on Power Delivery (S0885-8977), 2013, 29(3): 1074-1082.
  • 5Mourad Hasni, Zohir Mancer, Said Mekhtoub, et al. Parametric Identification of the Doubly Fed Induction Machine [J]. Energy Procedia (S1876-6102), 2012, 18(12): 177-186.
  • 6Lalami A, Wamkeue R, Kamwa I, et al. Unscented Kalman Filter for Non-linear Estimation of Induction Machine Parameters [J]. lET Electric Power Applications (S1751-8660), 2013, 6(9): 611-620.
  • 7Lihang Zhao, Jin Huang, He Liu, et al. Second-Order Sliding-Mode Observer with Online Parameter Identification for Sensorless Induction Motor Drives [J]. IEEE Transactions on Industrial Electronics (S0278-0046),2014, 61(10): 5280-5289.
  • 8王红,梁俊霞,胡佳琳.基于αβ坐标系模型的双馈风力发电机参数辨识[J].电力系统保护与控制,2014,42(20):81-85. 被引量:9
  • 9Yangfei Zhang, Yue Yuan, Xiaohu Chen, et al. The Optimization Initial Value and Micro-variation Search Algorithm and Its Simulation in Parameter Identification of Doubly Fed Induction Generator [C]// International Conference on Sustainable Power Generation and Supply, Nanjing, China: IEEE, 2009: 1-4.
  • 10金宇清,赵泽,鞠平,吴峰.双馈感应风力发电机的参数辨识分析[J].高电压技术,2011,37(7):1700-1705. 被引量:29

二级参考文献43

  • 1JU Ping, JIN YuQing, CHEN Qian, SHAO ZhengYan & MAO Chao College of Electrical Engineering, Hohai University, Nanjing 210098, China.Identifiability and identification of a Synthesis Load Model[J].Science China(Technological Sciences),2010,53(2):461-468. 被引量:5
  • 2雷亚洲,Gordon Lightbody.国外风力发电导则及动态模型简介[J].电网技术,2005,29(12):27-32. 被引量:157
  • 3胡建秀,曾建潮.微粒群算法中惯性权重的调整策略[J].计算机工程,2007,33(11):193-195. 被引量:62
  • 4戴慧珠,王伟胜,迟永宁.风电场接入电力系统研究的新进展(英文)[J].电网技术,2007,31(20):16-23. 被引量:97
  • 5孙元章,吴俊,李国杰.风力发电对电力系统的影响(英文)[J].电网技术,2007,31(20):55-62. 被引量:184
  • 6ASMINE M,BROCHU J,FORTMANN J,et al.Model validation for wind turbine generator modelsK[ J].IEEE Transactions on Power Systems,2011,26(3):1769-1782.
  • 7MARINO P,MUNGIGUERRA V,RUSSO F,et al.Parameter and state estimation for induction motors via interlaced least squares algorithm and Kalman filter[ C]//27th Annual IEEE Power Electronics Specialists Conference.New York:IEEE Computer Society Press,1996:1235-1241.
  • 8SAG T,CUNKAS M.Multi-objective genetic estimation to induction motor parameters[ C ]//International Aegean Conference on Electrical Machines and Power Electronics and Electron-motion ACEMP'07 and Electromotion'07 Joint Conference.New York:IEEE Computer Society Press,2007:628-631.
  • 9URSEM R K,VADSTRUP P.Parameter identification of induction motors using differential evolution [ C ]//IEEE Congress on Evolutionary Computation.New York:IEEE Computer Society Press,2003:790-796.
  • 10EBERHART R C,KENNEDY J.A new optimizer using particle swarm theory [ C ]//Proceedings of the sixth international symposium on micro machine and human science.Nagoya:IEEE Computer Society Press,1995:3943.

共引文献34

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部