期刊文献+

基于混沌识别的振动压实系统动态设计分析 被引量:6

Dynamic Design for Vibratory Compaction System Basing on Chaos Identification
下载PDF
导出
摘要 针对传统的简单动态设计方法,在研究压实系统中忽略非线性混沌态振动对人体身心健康的影响,提出基于系统混沌识别的动态设计方法。通过建立振动压实系统的二自由度动力学模型,采用周期取点构建混沌识别分叉图方法,分析在物料压实初、中、后期3种不同的土壤参数情况下的压实系统非线性振动响应。研究表明,选取机架质量为振动轮质量的0.85~1倍、机架振动固有频率为8~9.5和阻尼比系数为0.195~0.215时,可以弱化系统的非线性特性从而避开混沌振动区。 According to the shortage of traditional design method and the fact that the effects of nonlinear chaotic vibration on human health were ignored in the research of compaction system, a dynamic design method basing on chaos identification was proposed. A two degree of freedom dynamic model was established and the bifurcation diagrams were described for vibratory compaction system. The dynamic responses of the system were analyzed in the cases of three different soil parameters representing the early, medium and later stage of compacted material. Research shows that, selecting the ratio of the frame quality and the vibration wheel quality in the range from 0.85 to 1, the natural frequency of frame in the range from 8 to 9.5 and the damping ratio in the range from 0.195 to 0.215 can weaken the nonlinear characteristics of the system so as to avoid chaotic vibration as much as possible.
出处 《系统仿真学报》 CAS CSCD 北大核心 2016年第5期1232-1241,共10页 Journal of System Simulation
基金 国家自然科学基金(51175086) 福建省交通运输厅科技研发支持项目(201120) 福建省自然科学基金资助项目(2015J01186)
关键词 振动压路机 动力学模型 混沌振动 动态设计 vibratory roller dynamic model chaotic vibration dynamic design
  • 相关文献

参考文献18

  • 1Wersall C, Larsson S. Small-scale testing of frequency-dependent compaction of sand using a vertically vibrating plate [J]. Geotechnical Testing Journal (S0149-6115), 2013, 36(3): 394-403.
  • 2Monical A, Rosalla P T, Dolores M A, et al. Comparative analysis of exposure limit values of vibrating hand-held tools [J]. International Journal of Industrial Ergonomics (S0169-8141), 2013, 43(3): 218-224.
  • 3Yoo T S, Selig E T. Dynamics of vibratory-roller compaction [J]. Journal of the Geotechnical Engineering Division (S0093-6405), 1979, 105(10): 1211-1231.
  • 4Rinehart R V, Berger J R, Mooney M A. Comparison of stress states and paths vibratory roller-measured soil stiffness and resilient modulus testing [J]. Transportation Research Record (S0361-1981), 2009, 2116(2): 8-15.
  • 5Grabe J. Continuous invers calculation of soil stiffness from the dynamic behaviour of a driving vibratory roller [J]. Archive of Applied Mechanics (S0939-1533), 1993, 63(1): 472-478.
  • 6Lu S, Chung D D L. Viscoelastic behavior of silica particle compacts under dynamic compression [J]. Journal of Materials in Civil Engineer (S0899-1561), 2014, 26(3): 551-553.
  • 7管迪,陈乐生.振动压路机的一种非线性动力学建模与仿真[J].系统仿真学报,2007,19(24):5809-5811. 被引量:14
  • 8Cao Y W, Huang X J, Ma L Y. Finite element analysis to vibratory drum-soil model of vibratory roller [J]. Applied Mechanics and Materials (S1662-7482), 2011, 96(7): 2005-2008.
  • 9Xu Q, Chang G K. Evaluation of intelligent compaction for asphalt materials [J]. Automation in Construction (S0926-5805), 2013, 30(3): 104-112.
  • 10Liu D H, Sun J, Zhong D H. Compaction quality control of earth-rock dam construction using real-time field operation data [J]. Journal of Construction Engineering and Management (S0733-9364), 2012, 138(9): 1085-1094.

二级参考文献8

共引文献13

同被引文献41

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部