期刊文献+

猪Cidec两种可变剪切体的发现及组织分布 被引量:2

Detection and Tissue Distribution of the Two Alternative Splicing of Cidec in the Pig
原文传递
导出
摘要 研究发现猪Cidec存在两种可变剪切体,分别为长亚型Cidce1和短亚型Cidec2。Cidec1翻译出的蛋白质有248个氨基酸,而Cidec2翻译出的蛋白质有238个氨基酸。通过定量PCR检测发现,在猪的肝脏和小肠里Cidec1为主要存在亚型,而在猪的肌肉和脂肪中Cidec2为主要亚型,且两亚型在三元杂猪(DLY)各组织中表达量也存在差异。根据不同亚型的组织分布差异推测Cidec1和Cidec2在脂肪代谢中发挥不同作用,后构建其表达载体和定位载体,为进一步研究蛋白功能和亚细胞定位提供后续实验材料。 This study showed that there were two alternatives splicing of Cidec in the pig, long subtypes Cidce1 and short subtypes Cidec2 respectively. Cidec1 translate 248 amino acids, and Cidec2 translate 238 amino acids.Through quantitative PCR detection, Cidec1 is the major subtype in the liver and small intestine, and the major subtype is Cidec2 in the muscle and fat, and there are differences between two isoforms in DLY. According to the distribution of different subtypes inference, Cidec1 and Cidec2 play different roles in the fat metabolism. We constructd the expression vector and fluorescence positioned vectors for further study on protein function and subcellular localization of subsequent experiment materials.
出处 《基因组学与应用生物学》 CAS CSCD 北大核心 2016年第4期838-844,共7页 Genomics and Applied Biology
基金 国家自然科学基金(31301947) 广西自然科学基金重点项目(2014GXNSFDA118014) 霍英东教育基金会青年教师基金(141025) 广西大学科研基金(XTZ130719)共同资助
关键词 Cidec基因 DLY 荧光表达载体 荧光定位载体 Cidec gene DLY Fluorescence expresed vector Fluorescence positioned vector
  • 相关文献

参考文献11

  • 1Blencowe B.J., 2006, Alternative splicing: new insights fi'om global analyses, Cell, 126(1): 37-47.
  • 2Grahn T.H., Zbang Y., Lee M.J., Sommer A.G., Mostoslavsky G., Fried S.K., Greenberg A.S., and Puff V., 2013, FSP27 and PLIN1 interaction promotes the formation of large lipid droplets in human adipocytes, Biochem. Biophys Res. Com- mun., 432(2): 296-301.
  • 3Li H., Chen A., Shu L., Yu X., Gan L., Zhou L., and Yang Z., 2014, Translocation of CIDEC in hepatocytes depends on fatty acids, Genes to Cells, 19(11): 793-802.
  • 4Li H., Song Y., Li F., Zhang L., Gu Y., Zhang L., and Jiang L., 2010, Identification of lipid droplet-associated proteins in the formation of macrophage-derived foam cells using mi- croarrays, Int. J. Mol. Med., 26(2): 231-239.
  • 5Liang L., Zhao M., Xu Z., and Li T., 2003, Molecular cloning and characterization of CIDE-3, a novel member of the cell- death-inducing DNA-fragrnentation-factor (DFF45)-like ef- fector family, Biochem. J., 370(Pt 1): 195-203.
  • 6Mortazavi A., Williams B.A., McCue K., Schaeffer L., and Wold B., 2008, Mapping and quantifying mammalian transcripto- mes by RNA-Seq, Nat. Methods, 5(7): 621-628.
  • 7Nian Z., Sun Z., Yu L., Toh S.Y., Sang J., and Li P., 2010, Fat- specific protein 27 undergoes ubiquitin-dependent degrada- tion regulated by triacylglycerol synthesis and lipid droplet formation, 285(13): 9604-9615.
  • 8宁应之,赵康平,熊杰,袁冬霞,缪炜.嗜热四膜虫可变剪接基因鉴定及功能分析[J].基因组学与应用生物学,2015,34(1):17-27. 被引量:1
  • 9Nishino N., Tamori Y., Tateya S., Kawaguchi T., Shibakusa T., Mizunoya W., Inoue K., Kitazawa R., Kitazawa S., Matsuki Y., Hiramatsu R., Masubuchi S., Omachi A,, Kimura K., Saito M., Amo T., Ohta S., Yamaguchi T., Osumi T., Cheng J., Fujimoto T., Nakao H., Nakao K., Aiba A., Okamura H., Fushiki T., and Kasuga M., 2008, FSP27 contributes to effi. cient energy storage in murine white adipocytes by promot-ing the formation ofunilocular lipid droplets, J. Clin. Invest., 118(8): 2808-2821.
  • 10Purl V., Konda S., Ranjit S., Aouadi M., Chawla A., Chouinard M., Chakladar A., and Czech M.P., 200"7, Fat-specific pro- tein 27, a novel lipid droplet protein that enhances triglyc-eride storage, J. Biol. Chem., 282(47): 34213-34218.

二级参考文献38

  • 1Blencowe B.J., 2006, Alternative splicing: new insights fromglobal analyses, Cell, 126(1): 37-47.
  • 2Boudsocq M., Droillard M.J., Regad L., and Lauribre C., 2012, Characterization of Arabidopsis calcium-dependent protein kinases: activated or not by calcium? Biochem. J., 447 (2): 291-299.
  • 3Chang Y.F., Imam J.S., and Wilkinson M.F., 2007, The non- sense-mediated decay RNA surveillance pathway, Annu. Rev. Biochem., 76:51-74.
  • 4Filichkin S.A., Priest H.D., Givan S.A., Shen R., Bryant D.W., Fox S.E., Wong W.K., and Moclder T.C., 2010, Genome-wide mapping of alternative splicing in Arabidopsis thaliana, Genome Res., 20(1): 45-58.
  • 5Finn R.D., Tate J., Mistry J., Coggill P.C., Sammut S.J., Hotz H. R., Ceric G., Forslund K., Eddy S.R., Sonnhammer E.L., and Baternan A., 2008, The Pfam protein families database, Nucleic Acids Res., 36(Database issue): D281-D288.
  • 6Fryer L.G., and Carling D., 2005, Amp-activated protein kinase and the metabolic syndrome, Biochem. Soc. Trans., 33(Pt 2): 362-366.
  • 7Glickman M.H., and Ciechanover A., 2002, The ubiquitin-pro- teasome proteolytic pathway: destruction for the sake of construction, Physiol. Rev., 82(2): 373-428.
  • 8Greider C.W., and Blackburn E.H., 1985, Identification of a spe- cific telomere terminal transferase activity in Tetrahymena extracts, Cell, 43(2 Pt 1): 405-413.
  • 9Hanna R.A., Campbell R.L., and Davies P.L., 2008, Calci- um-bound structure of calpain and its mechanism of inhibi- tion by calpastatin, Nature, 456(7220): 409-412.
  • 10Hershko A., 2005, The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle, Cell Death Differ., 12(9): 1191-1197.

同被引文献13

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部