期刊文献+

具有混合变时滞的时变切换中立系统的鲁棒指数稳定性分析

Robust exponential stability analysis for switched neutral systems with mixed time-varying delays
下载PDF
导出
摘要 研究了一类具有混合变时滞的时变切换中立系统的鲁棒稳定性分析.基于分段Lyapunov-Krasovskii泛函方法,引入自由权矩阵,给出了时变切换中立系统在满足一定平均驻留时间切换条件下的指数稳定判据条件. This paper focuses on analyzing robust stability for a class of switched neutral systems with mixed time-varying delays.Firstly,based on a piecewise Lyapunov-Krasovskii functional approach,by introducing free-weighting matrices,a sufficient condition for exponential stability is developed for an arbitrary switching signal satisfying an average dwell time condition.This condition is given in terms of linear matrix inequalities,which depends on not only the upper bounds of the time-varying delays but also the upper bounds of the derivatives of the time-varying delays.Last,we point out that the result proposed in this paper including the result of switched delay systems as a special case.
作者 李太芳 朱进
出处 《渤海大学学报(自然科学版)》 CAS 2016年第1期81-87,共7页 Journal of Bohai University:Natural Science Edition
基金 国家自然科学基金项目(No:61503041)
关键词 切换中立系统 时变时滞 指数稳定 switched neutral systems time-varying delay exponential stability
  • 相关文献

参考文献12

  • 1XIONG L, ZHONG S, YE M, et al. New stability and stabilization for switched neutral control systems~ J]. Chaos, Solitons & Fractals, 2009, 42(3) : 1800 -1811.
  • 2LI T, ZHAO J, DIMIROVSKI G. Stability and L2 - gain analysis for switched neutral systems with mixed time - varying delays [ J ], Journal of the Franklin Institute, 2011,348(9) : 2237 -2256.
  • 3HALE J, LUNEL S. Introduction to functional differential equations[ M3. New York: Springer- Verlag, 1993.
  • 4CHEN W, ZHENG W. Delay -dependent robust stabilization for uncertain neutral systems with distributed delays [ J 3- Automatica, 2007, 43 (1): 95 -104.
  • 5CHEN Y, XUE A, LU N, et al. On robustly exponential stability of uncertain neutral systems with time - varying delays and nonlinear perturba- tions [ J 3. Nonlinear Analysis : Theory, Methods & Applications, 2008, 68 ( 8 ) : 2464 - 2470.
  • 6ZHANG J, PENG S, QIU J. Robust stability criteria for uncertain neutral system with time delay and nonlinear uncertainties[ J3. Chaos, Solitons & Fraetals, 2008, 38( 1 ) : 160 - 167.
  • 7QIU F, CUI B, JI Y. Further results on robust stability of neutral system with mixed time - varying delays and nonlinear perturbations [ J ~. Non- linear Analysis: Real World Applications, 2010, 11 (2) : 895 -906.
  • 8苏亚坤,热贝嘉措.带有时变时滞的中立型随机系统的鲁棒镇定和H_∞控制[J].渤海大学学报(自然科学版),2015,36(1):24-31. 被引量:2
  • 9LIBERZON D. Switching in Systems and Control[ M 1. Boston : Birkhauser, 2003.
  • 10孙希明,付俊,孙洪飞,赵军.一类切换线性中立时滞系统稳定性的分析[J].中国电机工程学报,2005,25(23):42-46. 被引量:8

二级参考文献27

  • 1胡宗波,张波,邓卫华,张涌萍.基于切换线性系统理论的DC-DC变换器控制系统的能控性和能达性[J].中国电机工程学报,2004,24(12):165-170. 被引量:25
  • 2孙希明,齐丽,赵军.一类不确定线性系统的混杂状态反馈保成本控制[J].控制与决策,2005,20(4):421-425. 被引量:8
  • 3翟军勇,费树岷.基于在线学习的多模型自适应控制[J].中国电机工程学报,2005,25(9):80-83. 被引量:13
  • 4Gollu A,Varaiya P P.Hybrid dynamical system[C].Proc 28th IEEE conf.Decision and Control.FLUSA:Tmpa,1989,2708-2712.
  • 5Jeon D,Tomizuka M.Leaning hybrid force and position control of robot manipulators[J].IEEE Trans on Robotics Automat,1996,9:423-421.
  • 6Qing-Long Han.On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty[J].Automatica,2004,40:1087-1092.
  • 7Kolmanovskii V B,Richard J P,Tchangani A Ph.Stability of linear systems with discrete-plus-distributed delays:Application to some model transformations[C].Proceedings of MTNS,1998,Padova,Italy.
  • 8Bellen A,Guglielmi N,Ruheli A E.Methods for linear systems of circuits delay differential equations of neutral type[J].IEEE Transactions on Circuits and Systems,1999,46(1):212-216.
  • 9Salamon D.Control and observation of neutral systems[M].Boston:Pitman Advanced Publishing Program,1984.
  • 10Park J.Robust guaranteed cost control for uncertain linear differential systems of neutral type[J].Applied Mathematics and Computation,2003,140(2-3):523-535.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部