期刊文献+

基于稀疏分解的轴承双冲击特征提取 被引量:2

Extraction of Twin Impulses Based on Sparse Decomposition
下载PDF
导出
摘要 旋转机械的轴承部件出现裂纹或凹坑时,会产生稀疏的双冲击信号,在故障早期时,双冲击信号会发生混叠现象。在稀疏分解过程中,传统的高斯最大原则无法准确提取故障信号原子。笔者通过分析冲击类故障双冲击信号的特点,研究双冲击混叠时时频因子与双冲击间隔之间的关系,构造冲击信号最优邻域,并提出一种邻域正交匹配追踪算法。在每次迭代中选取内积最大原子周围的部分原子组成子框架,计算振动信号在当前框架下的表示,再进一步计算残差信号,并进行下次迭代,直至满足迭代终止条件。通过仿真试验和故障实例分析发现,该方法能避免过匹配现象,并准确提取双冲击成分,从而计算出双冲击信号的时间间隔,对故障程度进行判定。 When a bearing appears cracked or pitted,twin impulse signals can be generated that overlap at initial faults.It was difficult to extract the atoms that best match the twin impulses based on the common maximum gaussianity criterion through traditional sparse decomposition.First,the relationship between time-frequency factors and the distance of twin impulses was discussed,according to which the optimal neighborhood could be constructed and a new method of the neighbor orthogonal matching pursuit could be introduced.In each iteration of this method,a sub-frame was constructed,consisting of the atoms neighboring the atom that had the maximum inner product with the residual signal.Next,the representation in this sub-frame was obtained,and the next residual signal was computed.The next iteration was made until the termination condition was met.The simulation and fault proved the effectiveness of this method in extracting the twin impulses and identifying the type of fault.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2016年第2期301-308,402,共8页 Journal of Vibration,Measurement & Diagnosis
基金 武汉科技大学冶金装备及其控制教育部重点实验室开放基金资助项目(2015B17) 国家自然科学基金资助项目(61174106)
关键词 轴承 双冲击信号 稀疏分解 框架 邻域正交匹配追踪 bearing twin impulse sparse decomposition frame neighbor orthogonal matching pursuit
  • 相关文献

参考文献10

二级参考文献58

  • 1李一兵,岳欣,杨莘元.多重自相关函数在微弱正弦信号检测中的应用[J].哈尔滨工程大学学报,2004,25(4):525-528. 被引量:49
  • 2林京.基于最大似然估计的小波阈值消噪技术及信号特征提取[J].仪器仪表学报,2005,26(9):923-927. 被引量:27
  • 3雷亚国,何正嘉,訾艳阳,胡桥,丁锋.混合聚类新算法及其在故障诊断中的应用[J].机械工程学报,2006,42(12):116-121. 被引量:16
  • 4ZHANG L,JACK L B, NANDI A K. Fault detectionusing genetic progranuning[J]. Mechanical Systems andSignal Processing,2005, 19(2) : 271-289.
  • 5WIDODO A, YANG B,HAN T. Combination ofindependent component analysis and support vectormachine for intelligent faults diagnosis of inductionmotors [J]. Expert Systems with Applications, 2007,32(2): 299-312.
  • 6MALHI A, GAO R X. PCA-based feature selectionscheme for machine defect classification^]. IEEETransaction on Instrumentation and Measurement, 2004,53(6): 1517-1525.
  • 7JOLLIFFE I T, TRENDAFILOV N T,UDDIN M. Amodified principal component technique based on theLASSO[J]. Journal of Computational and GraphicalStatistics, 2003,12(3): 531-547.
  • 8D,ASPREMONTA,GHAOUILE, JORDAN M I, et al.A direct formulation for sparse PCA using semidefiniteprogramming[J]. SIAM Review, 2007, 49(3): 434-448.
  • 9ZOUH, HASTIE T, TIBSHIRANI R. Sparse principalcomponent analysis[J]. Journal of Computational andGraphical Statistics,2006,15(2): 265-286.
  • 10ZASS R, SHASHUA A. Nonnegative sparse PCA[J].Advances in Neural Information Processing Systems,NIPS, 2007(19): 1561-1568.

共引文献172

同被引文献34

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部