期刊文献+

24种特征指标对轴承状态识别的性能研究 被引量:15

Studying on Property of 24Characteristic Indexes to Bearing State Recognition
下载PDF
导出
摘要 要实现机械设备的故障诊断,关键是要找到对设备状态敏感性和聚类性强的特征指标。针对如何筛选出满足上述特点的指标,提出结合投影寻踪方法研究24种特征指标对轴承状态识别的敏感性和聚类性;以内圈故障为例,构造其故障振动的数学模型,计算得到24种特征指标并将其投影,提出最佳投射方向矩阵,研究在最佳投影方向矩阵下24种特征指标的投影分布特征;提出用极差系数、平均差系数、离散系数、主轴线相对系数和均值系数来研究24种特征指标对不同故障的敏感性和聚类性;借助美国西储大学轴承数据中心网站公开发布的轴承探伤测试数据集中的内圈故障进行验证。该方法能够为轴承的故障诊断筛选优质特征指标,保证故障识别的及时性和诊断准确性。 Using a method combining the projection pursuit method,the sensitivity and clustering to bearing status recognition of 24 characteristic indexes was studied.Using an inner ring fault as an example,a mathematical model was constructed to simulate fault signals,and 24 characteristic indexes were generated,then projected.The best projection direction matrix was put forward,and the projection distribution characteristic was studied.The range coefficient,coefficient of mean deviation,coefficient of dispersion,main axis of the relative coefficient and coefficient of mean value were proposed to study the sensitivity and clustering to different failure status of the 24 characteristic indexes projection.It can be validated based on of the inner ring fault test data publicly released on the Case Western Reserve University Bearing Data Center website.This method can be used to screen high quality characteristics for bearing fault diagnosis,which can guarantee prompt fault recognition and accurate diagnosis.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2016年第2期351-358,406,共8页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(U1361127) 北京市教育委员会科学研究与研究生培养共建项目 中央高校基本科研业务费项目(2013QJ02)
关键词 24种特征指标 投影寻踪 最佳投影方向矩阵 敏感性 聚类性 24 characteristic indexes projection pursuit method best characteristic direction matrix sensitivity clustering
  • 相关文献

参考文献10

  • 1Vrabie V, Granjon P, Maroni C, et al. Application of spectral kurtosis to bearing fault detection in induction motors[J]. International Conference on Acoustical Vibratory Surveillance Methods & Diagnostic Tech- niques, 2004,3(5) :31-33.
  • 2Jack L B, Nandi A K, Mccormick A C. Diagnosis of rolling element bearing faults using radial basis unc- tion networks [J]. Applied Signal Processing, 1999,6 (1) :25-32.
  • 3欧璐,于德介,王翠亭.拉普拉斯特征向量相关谱及其在滚动轴承故障诊断中的应用[J].振动工程学报,2014,27(5):748-754. 被引量:3
  • 4平鹏,张万斌,徐泽宁.时域及功率谱特征因子诊断轴承故障的实验研究[J].振动.测试与诊断,1991,11(4):34-38. 被引量:4
  • 5李力,廖湘辉,张圆.循环平稳度无量纲指标应用于滚动轴承状态分类[J].机械传动,2005,29(3):21-23. 被引量:6
  • 6Maechler M, Mertin D, Schimert J. Projection pursuit learning networks for regressionI-C] /// Proceedings 2 : International IEEE Conference Tools Artificial Intelli- gence. N. J : IEEE, 1990 : 350-358.
  • 7Miyoshi T. Near-fuzzy projection pursuit regression I-C] // IEEE International Conference Neural Net- works. N.J.: IEEE, 1995:266-270.
  • 8Hwang J N. The cascade-correlation learing: a projec- tion pursuit learning perspective[C]//IEEE Transac- tion Neural Networks. N.J. : IEEE, 1996:278-289.
  • 9FU Qiang1,2, LU Tie guang2, FU Hong2(1. College of Hydraulic Power, Sichuan University, Chengdu 610065, P.R.China,2. Northeast Agricultural University, Harbin 150030, P. R. China).APPLYING PPE MODEL BASED ON RAGA TO CLASSIFYAND EVALUATE SOIL GRADE[J].Chinese Geographical Science,2002,12(2):136-141. 被引量:19
  • 10Safavian S R, Rabiee H R, Fardanesh M. Projection pursuit image compression with variable block size segmentation[C//IEEE Signal Process Letters. N. J. : IEEE, 1997,4(5)117-120.

二级参考文献21

  • 1王武秀,沈玉娣.应用无量纲幅域参数诊断齿轮箱故障[J].机械传动,1996,20(1):46-50. 被引量:6
  • 2Heng R B W, Nor M J M. Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition. Applied Acoustics, 1998,53(1-3): 211-226.
  • 3孔敏,汤进,罗斌.基于拉普拉斯图的谱特征的图像聚类研究[J].中国科学技术大学学报,2007,37(9):1125-1129. 被引量:2
  • 4梅志坚,师汉民,昌松,杨叔子.信号功率谱特征变化的时域快速诊断[J]华中理工大学学报,1988(03).
  • 5Diallo D, Benbouzid M E H, Hamad D, et al. Fault detection and diagnosis in an induction machine drive:A pattern recognition approach based on Concordia sta- tot mean current vector F Jl. IEEE Trans. Energy Convers, 2005,20(3) :512-519.
  • 6Beniz R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[J]. The Journal of Physical A, 1981,14(11) :4 453-4 572.
  • 7HU Qinghua, LIU Jinfu, YU Daren. Mixed feature selection based on granulation and approximation[J].Knowledge Based Systems, 2008,21(4) : 294-304.
  • 8JACK L B, NANDI A K, MCCORMICK A C. Diag- nosis of rolling element bearing faults using radial ba- sis function networks[J].Applied Signal Processing, 1999,6:25-32.
  • 9Hyun Joon Shin. One-class support vector machines- an application in machine fault detection and classifica- tion[J].Computers & Industrial Engineering, 2005, 48:395-408.
  • 10FEI Shengwei, ZHANG Xiaobin. Fault diagnosis of power transformer based on support vector machine with genetic algorithm[J].Expert Systems with Ap- plications, 2009,36(8) :11 352-11 357.

共引文献26

同被引文献129

引证文献15

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部