期刊文献+

人眼疲劳预测技术的研究 被引量:3

Research for eye fatigue prediction technology
下载PDF
导出
摘要 对人类疲劳的检测,目前分为检测身体活动,包括头部等一些身体行为和检测生物信号,包括眼睛嘴巴状态或脑电波信号等,这些方法的共同点和弊端是在当事人进入疲劳状态后才能作出判断,但对于驾驶员制动延迟零点几秒也可能酿成重大事故的情况,以往的方法显然是不适应的,针对此弊端,特别提出一种根据当前数据预测下一个时间段的精神状态的方法,能有效地防止事故的发生。利用灰度投影法与灰度变化标准差的结合完成多角度眼睛的定位,根据提出的一种简便且准确的样点提取法来计算眼睛状态对应的阈值,利用马尔科夫链算法对司机的精神状态进行判断和预测。实验结果表明,该方法预测准确率高并有很好的实时性。 The main method of fatigue detecting can be divided into two part, one would be detecting the behavior of body which includes the head and stuff. The other would be detecting the biological signals including the state of mouth and eyes or the brain signals. The common and the disadvantages of these processes is the judgement that only can be made after getting into the fatigue state. Serious accident might happen if the driver starts braking delay tenths of second.Aiming at this disadvantage, this paper presents a method about forecasting the next period fatigue state according to the current data. It can prevent the accident happening effectively. It locates the eyes in multi-angle by using the horizontal gray-level projection and the gray value standard deviation, counts the eye-state-threshold by using a simple and accurate method presented by this paper. Markov chain would be used to forecast the fatigue state. The result shows that this method has high accuracy in forecasting with a good real-time.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第9期213-218,共6页 Computer Engineering and Applications
关键词 人眼定位 多角度 Sobel边缘提取 马尔科夫链 预测 eye location multi-angle Sobel edge extraction Markov chain forecast
  • 相关文献

参考文献12

  • 1Hu S Y,Zheng G T.Driver fatigue detection from electroencephalogram spectrum after electrooculography artefact removal[J].Intelligent Transport Systems,2013:105-113.
  • 2Wang H L,Liu H H,Song Z M.Fatigue driving detection system design based on driving behavior[C]//Optoelectronics and Image Processing,2010:549-552.
  • 3Zou G F,Wang K J,Tang M.Eyes location method based on the adaboost algorithm and block integral projection[C]//Control and Decision Conference(CCDC),2013:1483-1486.
  • 4Wang S L,Feng X,Chi H H.Localization and extraction on the eyes,nose and mouth of human face[C]//Granular Computing(GRC),2009:561-564.
  • 5Zhang H,Zhu Q Y,Guan X F.Probe into image segmentation based on sobel operator and maximum entropy algorithm[C]//International Conference on Computer Science&Service System,2012:238-241.
  • 6Deng C X,Ma W F,Yin Y.An edge detection approach of image fusion based on improved Sobel operator[C]//International Congress on Image and Signal Processing,2011:1189-1193.
  • 7Guo J B,Guo X S.Eye state recognition based on shape analysis and fuzzy logic[C]//Intelligent Vehicles Symposium,2009:78-82.
  • 8Song K,Shen F,Liu Z,et al.Eye detection and recognition in the fatigue warning system[C]//Intelligent Networks and Intelligent Systems,2010:36-38.
  • 9Chang G.Bayesian Markov mixture of normals approach to modeling financial returns[J].Studies in Economics,2006:141-158.
  • 10Ben Ayed A,Selouani S A.Market customers classification using hidden Markov models toolkit[C]//Computer Applications Technology,2013.

二级参考文献21

  • 1王磊,吴晓娟,巴本冬,董文会.一种基于视觉的PERCLOS特征提取方法[J].计算机工程与科学,2006,28(6):52-54. 被引量:8
  • 2Grace R. Drowsy driver monitor and warning system[ C ]. International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design. Aspen, USA. 2001.
  • 3Van Orden K,Limbert W,Makeig S,Jung T P. Eye activity correlates of workload during a visualspatial memory task [ J ]. Human Factors. 2001,43( 1 ) :111 - 121.
  • 4Akerstedt T, Gillberg M. Subjective and objective sleepiness in the active individual [ J ]. International Journal of Neuroscience. 1990,52:29 - 37.
  • 5A Rechtschaffen and A Kales, A manual of standardized terminology, techniques and scoring for sleep stages of human subjects. Wash. DC : US Government Printing Office, 1968.
  • 6Croft R. J. , Barry R. J. Removal of ocular from the EEG : a review [J]. Neurophysiol Clin. 2000,30(2) :5 -19.
  • 7Shen K. Q. , Ong C. J. , Li X. P. , et al. A Feature Selection Method for Multilevel Mental Fatigue EEG Classification [ J ]. IEEE transactions on biomedical engineering. 2007,57 (7) : 1231 - 1237.
  • 8Lin C. T. , Wu R. C. , Liang S. F. , et al. Estimating Driving Performance Based on EEG Spectrum Analysis[ J]. EURASIP Journal on Applied Signal Processing 2005,19:3165 -3174.
  • 9Japa B. T. , Lala S, FischerbP. , et al. Using EEG spectral components to assess algorithms for detecting fatigue[J]. Expert Systems with Applications. 2009,36 ( 2 ) :2352 - 2359.
  • 10Lala S. K. L. , Craiga A. , Boorda P. , et al. Development of an algorithm for an EEG-based driver fatigue countermeasure [ J ]. Journal of Safety Research. 2003,34(3 ) :321 - 328.

共引文献24

同被引文献15

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部