期刊文献+

动态碎裂过程中的最快速卸载现象 被引量:6

The rapidest unloading in dynamic fragmentation events
原文传递
导出
摘要 固体在高应变率加载作用下常常断裂成多个碎片.Grady针对韧性碎裂和脆性碎裂提出了一个同样形式的碎片尺度预测公式,对韧性碎裂结果预测较好,而对脆性碎裂结果的预测相对较差.是否存在一种物理机制可以同时阐述韧性碎裂和脆性碎裂过程呢?本文借鉴Grady解决绝热剪切问题时提出的最小集中化时间的思想,认为固体的动态碎裂过程中存在着最快速卸载现象.对韧性碎裂过程和脆性碎裂过程从理论和数值计算上进行分析,发现最快速卸载理论得到的平均碎片尺度和目前文献报道结果均吻合较好. Solids usually break (fragmentize) into many pieces under high rate loading. Grady and co-worker have proposed one-dimensional theoretical models to estimate the average size of the fragments created in a ductile or a brittle fragmentation process. Numerical simulations have shown that the formulae, albeit identical in appearance, work well for the ductile fragmentation event, but poorly for the brittle case. In this paper we seek the physical mechanism that describes both the ductile and the brittle fragmentation processes. In analyzing the formation of multiple adiabatic shear bands, Grady and co-worker have proposed a conjecture that the bands automatically arrange their spacing so that the stress within the material is unloaded at the shortest time. In this paper, we apply Grady's "rapidest unloading" principle to three types of solid fragmentations: the multiple adiabatic shear localizations, the ductile tensile fragmentation, and the brittle tensile fragmentation. We analyzed the simultaneous formation and growth of an array of equally-spaced defects, and the unloading wave propagations in the defect-free region. The average stress across the region was determined, from which the critical fracture time, defined as the time when the average stress drops to zero, is evaluated. It appears that for a prescribed strainrate, there always exists an optimum defect spacing corresponding to the rapidest unloading process. Assuming that in a natural fragmentation process the solids is unloaded in the fastest way, this optimum spacing provides an estimate for the average fragment size. For the three types of fragmentation events, the fragment size evaluated by using "the rapidest unloading" principle compares fairly well with the other reasonable fragment size models.
出处 《中国科学:技术科学》 EI CSCD 北大核心 2016年第4期332-338,共7页 Scientia Sinica(Technologica)
基金 国家自然科学基金(批准号:11402130 11272163 11390361) 宁波大学王宽诚幸福基金资助项目
关键词 碎裂 裂纹阵列 应力波作用 最快速卸载 平均碎片尺寸 solid fragmentation, defect array, stress wave interaction, the rapidest unloading, average fragment size
  • 相关文献

参考文献4

二级参考文献68

  • 1陈刚,陈忠富,陶俊林,牛伟,张青平,黄西成.45钢动态塑性本构参量与验证[J].爆炸与冲击,2005,25(5):451-456. 被引量:98
  • 2桂毓林,孙承纬,路中华,李强,张光升.一维快速拉伸下无氧铜的动态断裂与破碎[J].爆炸与冲击,2007,27(1):40-44. 被引量:6
  • 3陈刚,陈忠富,徐伟芳,陈勇梅,黄西成.45钢的J-C损伤失效参量研究[J].爆炸与冲击,2007,27(2):131-135. 被引量:75
  • 4Mott N F. Fragmentation of shell cases[J]. Proceedings of the Royal Society of London: A, 1947,189:300-308.
  • 5Grady D E. Applications of survival statistics to the impulsive fragmentation of ductile rings[C] // Shock Waves and High-strain-rate Phenomena in Metals. Meyers M A, Murr L E. London & New York: Plenum, 1981: 181- 192.
  • 6Grady D E. Local inertial effects in dynamic fragmentation[J]. Journal of Applied Physics, 1982,53: 322-325.
  • 7Grady D E, Kipp M E. Mechanisms of dynamic fragmentation: Factors governing fragment size[J]. Mechanics of Materials, 1985,4:311-320.
  • 8Kipp M E, Grady D E. Dynamic fracture growth and interaction in one dimension[J]. Journal of Mechanics and Physics of Solids, 1985,33:399-415.
  • 9Grady D E, Kipp M E. Dynamic rock fragmentation[M]//Fracture Mechanics of Rocks. London: Academic Press Inc, 1987:429-475.
  • 10Holian B L, Grady D E. Fragmentation by molecular dynamics: The microscopic Big Bang[J]. Physical Review Letters, 1988,60:1 355-1 358.

共引文献33

同被引文献63

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部