期刊文献+

压缩感知技术在数字图像加密中的应用研究

Application of Compressed Sensing Technology in Digital Image Encryption
下载PDF
导出
摘要 基于压缩感知技术设计了一种新的数字图像加密方法.在准备好初始密钥的情况下,应用移位触发器产生量化数组和干扰元素,再利用设计的若干密钥即可高效地对数字图像进行加密.实验表明,方案易于执行、加密安全性高且能抵御数据丢失,非法人员无法在不知密钥的情况下解密还原出原始图像;此方法压缩采样率低,且能较好地实现图像的隐蔽传输. The study designs a new encryption method of digital images based on the compressed sensing technology. In the case of the initial key is ready,use the shift trigger to produce quantization array and interference elements,and then use the designed secret key to encrypt the digital image efficiently. The experiment shows that the method is easy to perform,has high security of encryption and could withstand the loss of data. Illegal personnel without the key could not decrypt and recover the original image. This method has low compressed sampling rate and could realize the covert transmission of image in a better way.
作者 蔡正保
出处 《长沙大学学报》 2016年第2期60-62,共3页 Journal of Changsha University
基金 安徽省自然科学研究重点项目(批准号:KJ2016A116)
关键词 压缩感知 数字图像 干扰 数组 加密 compressed sensing digital image interference array encryption
  • 相关文献

参考文献2

二级参考文献25

  • 1阮炯.混沌应用研究的动态及分析[J].自然杂志,1995,17(6):318-322. 被引量:10
  • 2戴建华,尹华伟,张洪均,吴令安.混沌在信息加密中的应用[J].科学通报,1996,41(5):402-405. 被引量:12
  • 3方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 4吴祥兴 陈忠 等.混沌学导论[M].上海:上海科学技术文献出版社,2001.57-83.
  • 5Kotulski Z,Szczepański J.Application of Discrete Chaotic Dynamical Systems in Cryptography-DCC Method[J].International Journal of Bifurcation and Chaos,1999,9(6):1121-1135.
  • 6Jakimoski G,Kocarev L.Chaos and Cryptography:Block Encryption Ciphers Based on Chaotic Maps[J].IEEE Transactions on Circuits System-1:Fundamental Theory and Applications,2001,48(2):163-169.
  • 7Baranovsky A,Daems D.Design of One-dimensional Chaotic Maps with Prescribed Statistical Properties[J].International Journal of Bifurcation and Chaos,1995,5(6):1585-1598.
  • 8CAND~S E, ROMBERG J, TAO T. Robust uncertainty principle: exact signal reconstruction from highly incomplete frequency information[ J]. IEEE Transactions on Information Theory, 2006, 52(2) : 489 - 509.
  • 9BARANIUK R G. Compressive sensing[ J]. IEEE Signal Processing Magazine, 2007, 24(4) : 118 - 121.
  • 10CANDES E, TAO T. Near optimal signal recovery from random matrix projections: universal encoding strategies? [ J]. IEEE Transactions on Information Theory, 2006, 52(2) : 489 - 509.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部