期刊文献+

基于用户满意度的学术文献推荐评价研究 被引量:4

Research on User Satisfaction-based paper recommendation evolution
下载PDF
导出
摘要 学术文献推荐可以自动化地为学者推荐合适的文献。借助于文献推荐,用户可以在一定程度上提高文献检索的效率。鉴于当前对文献推荐的评价缺少实证研究,本文从文献推荐的内容质量、服务质量和技术能力三个方面,检验其对用户满意度和持续使用意愿的影响关系。利用量表式问卷对网络用户进行调查,通过结构方程建模的方法对所回收的问卷进行分析。用户使用文献推荐服务的满意度受到推荐内容质量、服务质量和技术能力的影响,进而影响其持续使用意愿。 Paper recommendation can recommend suitable documents for an author. With the aid of paper recommendation, authors can improve the efficiency of retrieving academic literatures. Due to the lack of empirical study on paper recommendation evolution, this paper aims at exploring the interaction on user satisfaction and continuing use willingness for three aspects such as recommended content quality, service quality and technical capacity. This paper collects 299 valid questionnaires with questionnaires scale for users, and analyzes the samples by means of structural equation modeling (SEM). We find that recommended content quality, service quality and technical capacity have positive effects on user satisfaction, and further have positive effects on users' continuing use willingness.
出处 《数字图书馆论坛》 CSSCI 2016年第4期22-29,共8页 Digital Library Forum
关键词 学术文献推荐 推荐内容质量 服务质量 技术能力 用户满意度 Paper Recommendation Recommended Content Quality Service Quality Technical Capacity User Satisfaction
  • 相关文献

参考文献24

  • 1May R M. The Scientific Wealth of Nations [J]. Science, 1997, 275(5301):793-796.
  • 2Mallik A, Mandal N. Bibliometric analysis of global publication output andcollaboration structure study in microRNA research [J]. Scientometrics,2014,98(3): 2011-2037.
  • 3李琳娜,张志平,刘春霞.文献推荐系统综述[J].数字图书馆论坛,2012(5):32-38. 被引量:5
  • 4陈海华,孟睿,陆伟.学术文献引文推荐研究进展[J].图书情报工作,2015,59(15):133-143. 被引量:10
  • 5Mcnee S M, Albert I,Dan C, et al. On the recommending of citations forresearch papers [C]// Cscw02,2002: 116-125.
  • 6Strohman T, Croft W B, Jensen D. Recommending citations for academicpapers [C]// SIGIR 2007. Proceedings of the 30th Annual InternationalACM SIGIR Conference on Research and Development in InformationRetrieval, Amsterdam, 2007: 705-706.
  • 7Zhou Shaoping. ActiveCite: An interactive system for automatic citationsuggestion [D]. Singapore: National University of Singapore, 2010.
  • 8朱郁筱,吕琳媛.推荐系统评价指标综述[J].电子科技大学学报,2012,41(2):163-175. 被引量:251
  • 9Herlocker J L, Konstan J A, Terveen L G, et al. Evaluating collaborativefiltering recommender systems [J]. ACM Transactions on InformationSystems, 2004,22(1): 5-53.
  • 10DeLone W H, McLean E R. Information systems success: The questfor the dependent variable [J], Information systems research, 1992, 3(1):60-95.

二级参考文献181

  • 1石杰,申德荣,聂铁铮,寇月,于戈.一种基于多因素的引文推荐方法[J].计算机研究与发展,2011,48(S3):180-188. 被引量:4
  • 2LOUSAME F E SANCHEZ E. A Taxonomy of Collaborative-Based Recommender Systems [J]. Studies in Computational Intelligence, 2009, 229: 81-117.
  • 3ADOMAV1CIUS G, TUZH1LIN A. Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 4WOODRUFF A, GOSSWEILER R, PITKOW J, et al. Eohancing a Digital Book with a Reading Recommender [C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, NY, USA. ACM, 2000:153-160.
  • 5WATANABE S, ITO T, OZONO T, et al. A Paper Recommendation Mechanism for the Research Support System Papits [C]//2005 International Workshop on Data Engineering Issues in E-Commerce, Tokyo, Japan. IEEE, 2005: 71-80.
  • 6GORI M, PUCC1 A. Research Paper Recommender Systems: A Random-Walk based Approach [C]// Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, Washington, USA. IEEE Computer Society, 2006: 778-781.
  • 7GOODRUM A. Scholarly Publishing in the Intemet Age: a Citation Analysis of Computer Science Literature [J]. Information Processing & Management, 2001, 37(5): 661-675.
  • 8STROHMAN T, CROFT W B, JENSEN D. Recommending Citations for Academic Papers [C]// Proceedings of the 30th Annual Intemational ACM SIGIR Conference on Research and Development in Information Retrieval, NY, USA. ACM, 2007, 705-706.
  • 9YU Z T, ZHENG Z Y, GAO S X, et al. Personalized Information Recommendation in Digital Library Domain Based on Ontology [C]//IEEE International Symposium on Communications and Information Technology, 2005, 1249-1252.
  • 10SUN Y H, NI W J, MEN R. A Personalized Paper Recommendation Approach based on Web Paper Mining and Reviewer' s Interest Modeling [C]// Proceedings of the 2009 International Conference on Research Challenges in Computer Science, Washington, DC, USA. IEEE Computer Society, 2009, 49-52.

共引文献358

同被引文献121

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部