期刊文献+

基于近似投影的分布式零阶Push-Sum优化算法

下载PDF
导出
摘要 为了优化求网络中所有个体局部目标函数(可能非光滑)之和平均值的最小值,采用了基于近似投影的分布式零阶方法,针对个体间的有向非平衡通信,通过与Push-sum算法相结合,研究了基于近似投影的多个体网络分布式零阶Push-sum优化算法。理论分析表明,在有向切换网络强连通的情况下,该算法收敛且收敛速度为O ln T+(1)(/T)。
出处 《宿州学院学报》 2016年第3期100-106,共7页 Journal of Suzhou University
基金 国家自然科学基金(61472003) 国家自然科学青年基金(11401008) 安徽省教育厅自然科学研究重点项目(KJ2014A067)
  • 相关文献

参考文献13

  • 1Nedic A,Ozdaglar A.Distributed subgradient methods for Multi-Agent optimization[J].IEEE Transactions on Automatic Control,2009,54(1):48-61.
  • 2ZHU Minghui,MartInez S.On distributed convex optimization under inequality and equality constraints via primal-dual subgradient methods[J].IEEE Trans.autom.control,2010,57(1):151-164.
  • 3YUAN D,XU S,ZHAO H.Distributed Primal-Dual subgradient method for multiagent optimization via consensus algorithms[J].IEEE Transactions on Systems,Man,and Cybernetics.Part B,Cybernetics:a Publication of the IEEE Systems,Man,and Cybernetics Society,2011,41(6):1715-1724.
  • 4YUAN De-ming,XU Sheng-yuan,ZHAO Huan-yu,et al.Distributed dual averaging method for multi-agent optimization with quantized communication[J].Systems&Control Letters,2012,61(11):1053-1061.
  • 5Lee S,Nedic A.Distributed random projection algorithm for convex optimization[J].IEEE Journal of Selected Topics in Signal Processing,2013,7(2):221-229.
  • 6LOU You-cheng,SHI Guo-dong,Johansson K H,et al.Approximate projected consensus for convex intersection computation:convergence analysis and critical error angle[J].IEEE Transactions on Automatic Control,2014,59(7):1722-1736.
  • 7Nesterov Y,Spokoiny V.Random Gradient-Free minimization of convex functions[J].Foundations of Computational Mathematics,2015,36(16):1-40.
  • 8Duchi J C,Jordan M I,Wainwright M J,et al.Optimal rates for Zero-Order convex optimization:the power of two function evaluations[J].IEEE Transactions on Information Theory,2013,61(5):2788-2806.
  • 9YUAN Deming,Ho D W,XU Shengyuan.Zeroth-Order method for distributed optimization with approximate projections[J].IEEE Transactions on Neural Networks and Learning Systems,2016,27(2):284-294.
  • 10Nedic A.Olshevsky A.distributed optimization over Time-Varying directed graphs[J].Automatic Control,IEEE Transactions on,2015,60(3):601-615.

二级参考文献9

  • 1Tsianos K I,Lawlor S and Rabbat M G. Consensus based Distributed Optimization:Practical Issues and Applications in Large-scale Machine Learning[C]. 50th IEEE Annual Allerton Conference on Communication, Control and Com- puting, 2012 : 1543-1550.
  • 2Gharesifard B and Cortfis J. Continuous-time Distributed Convex Optimization on Weight-balanced Digraphs[C]. 51st IEEE Annual Conference on Decision and Control, 2012:451- 7456.
  • 3Tsitsiklis J N. Problems in Decentralized Decision Making and Computation[R]. Massachusetts Inst of Tech Cam- bridge Lab for Information and Decision Systems, 1984.
  • 4Boyd S, Ghosh A and Prabhakar B. Randomized Gossip A1 gorithms[J]. IEEE Transactions on Information Theory, 2006,52(6) : 2508-2530.
  • 5Dimakis A D G, Sarwate A D and Wainwright M J. Geo- graphic Gossip: Efficient Averaging for Sensor Networks [J]. IEEE Transactions on Signal Processing, 2008, 56 (3) : 1205 -1216.
  • 6Iutzeler F, Ciblat P and Hachem W. Analysis of Sum- weight-like Algorithms for Averaging in Wireless Sensor Networks[J]. IEEE Transactions on Signal Processing, 2013,61(11) : 2802-2814.
  • 7Banfizit F,Blondel V and Thiran P and Tsitsiklis J. Weigh- ted Gossip: Distributed Averaging Using Non-doubly Sto- chastic Matrices [C]. IEEE International Symposium on nformation Theory Proceedings, 2010:1753-1757.
  • 8Nedic A and Olshevsky A. Distributed Optimization over Time-varying Directed Graphs [C]. S2th IEEE Annual Conference on Decision and Control,2013: 6855-6860.
  • 9Lee S and Nedic A. Distributed Random Projection Algo- rithm for Convex Optimization[J]. IEEE Journal of Se- lected Topics in Signal Processing, 2013(7) :221-229.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部