期刊文献+

钠离子电池钛基负极材料研究进展 被引量:2

Titanium-based materials as anode materials for sodium ion batteries
下载PDF
导出
摘要 钛基材料具有环境友好、安全性好、稳定性好等优点而备受关注。但是钛基材料带隙宽,电子导电性差,比容量低限制了其在钠离子电池领域的发展与应用。本文主要综述了TiO_2、Na_2Ti_nO_(2n+1)、NaTi_2(PO_4)_3三类钛基材料的结构、电化学性能、改性方法和相关储钠机理。评述了钛基材料存在的问题并展望了其发展前景。今后的研究可以从以下几方面开展:1深入研究钛基负极材料储钠机理;2研究多种阳、阴离子掺杂对钛基材料的电子结构的影响,从根本上提高钛基材料的电子导电性;3与高比容量负极材料复合,获得兼具稳定性与高比容量优点的复合材料;4设计合成具有多级、三维结构的钛基复合负极材料,进一步提高材料的循环稳定性、倍率性能;5开发新型结构的钛基负极材料。 Titanium-based materials have attracted increasing attention in recent years as anode materials for sodium ion batteries due to their properties of environmentally friendly, safe, and good stability. However, titanium-based materials show wide band gap, poor electronic conductivity, and low specific capacity, which limit their development and application in sodium ion batteries. This review focuses on the electrochemical properties, modification, and sodium storage mechanism of three titanium-based materials, which are TiO2, Na2TinO2n+1, and NaTi2(PO4)3. The problems and prospect are also pointed out for these materials. Future researches could be focused on the following aspects: ① investigating the electrochemical mechanism of titanium-based materials deeply and systematically;② the anions/cations doping effects on the structural, electronic and electrochemical properties of titanium-based materials; ③ the synergistic effect of titanium-based materials and anode materials with high specific capacity; ④ the design of hierarchically structure and three-dimensional structure for titanium-based materials;⑤ exploring titanium-based materials with novel structures.
出处 《储能科学与技术》 CAS 2016年第3期292-302,共11页 Energy Storage Science and Technology
基金 湖湘青年英才支持计划(2015RS4030) 湖南省自然科学基金(14JJ6017) 湖南省教育厅优秀青年项目(15B229)
关键词 钠离子电池 负极材料 钛基材料 sodium ion batteries anode materials titanium-based materials
  • 相关文献

参考文献2

二级参考文献28

  • 1Ong,S.P.; Chevrier,V.L.; Hautier,G.; Jain,A.; Moore,C.; Kim,S.; Ma,X.; Ceder,G.Energy Environ.Sci.2011,4,3680.doi: 10.1039/c1ee01782a.
  • 2Pan,H.; Hu,Y.S.; Chen,L.Energy Environ.Sci.2013,6,2338.doi: 10.1039/c3ee40847g.
  • 3Chevrier,V.; Ceder,G.J.Electrochem.Soc.2011,158,A1011.
  • 4Palomares,V.; Serras,P.; Villaluenga,I.; Hueso,K.B.; Carretero-González,J.; Rojo,T.Energy Environ.Sci.2012,5,5884.doi: 10.1039/c2ee02781j.
  • 5Slater,M.D.; Kim,D.; Lee,E.; Johnson,C.S.Adv.Funct.Mater.2013,23,947.doi: 10.1002/adfm.v23.8.
  • 6Alcántara,R.; Jiménez-Mateos,J.M.; Lavela,P.; Tirado,J.L.Electrochem.Commun.2001,3,639.doi: 10.1016/S1388-2481(01)00244-2.
  • 7Alcántara,R.; Lavela,P.; Ortiz,G.F.; Tirado,J.L.Electrochem.Solid-State Lett.2005,8,A222.
  • 8Doeff,M.M.; Ma,Y.; Visco,S.J.; De Jonghe,L.C.J.Electrochem.Soc.1993,140,L169.
  • 9Stevens,D.; Dahn,J.R.J.Electrochem.Soc.2000,147,1271.doi: 10.1149/1.1393348.
  • 10Stevens,D.; Dahn,J.R.J.Electrochem.Soc.2001,148,A803.

共引文献35

同被引文献24

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部