期刊文献+

差分进化神经网络集成的用户偏好模型构建 被引量:2

Customer preference model based on differential evolution neural network ensemble
下载PDF
导出
摘要 用户偏好模型的构建是推荐成功与否的基础。通过产品特征属性与用户特征属性的映射,建立用户偏好模型,引入神经网络集成的机器学习方法来模拟偏好模型。为了提高用户偏好模型的泛化能力,提出用负相关学习算法并行训练成员神经网络,采用差分进化算法对成员网络进行优化,从而有效降低网络集成的泛化误差,提高模型精度。通过Movielens数据仿真,并与单个BP神经网络、GASEN、核密度神经网络集成等模型实验结果进行对比分析,其均方差明显减少,验证了差分进化神经网络集成的用户偏好模型具有较好的泛化能力,能客观反映用户偏好,从而取得更好的推荐效果。 The construction of customer preference model is the basis of the success of the recommendation. A customer preference model is built by mapping the feature of the product and the customer's feature,and the neural network ensemble of machine learning method is introduced to simulate the preference model. In order to improve the customer preference model generalization ability,a negative correlation learning algorithm is proposed to train component neural network parallel,using differential evolution algorithm to optimize the component neural networks,thus effectively reducing generalization error of network ensemble and improve model accuracy. Through Movielens data simulation,comparing with the results of the models such as single BP neural network,GASEN,nuclear density of neural networks,etc.,it shows that it significantly reduces its average variance,verifying the customer preference model of differential evolution neural network ensemble has better generalization ability to objectively reflect customer preferences,to obtain a better recommendation results.
出处 《微型机与应用》 2016年第8期44-47,共4页 Microcomputer & Its Applications
基金 国家自然科学基金(70971052)
关键词 个性化推荐 用户偏好 负相关 神经网络集成 差分进化 personal recommendation customer preference negative correlation neural network ensemble differential evolution
  • 相关文献

参考文献6

二级参考文献40

  • 1BAKOS Y. The emerging role of electronic marketplaces on the Internet[J]. Communications of the ACM,1998,41 (8) :35-42.
  • 2PAZZANI M J, BILLSUS D. Content-based recommendation systems [ M ]. Berlin : Springer-Verlag,2007.
  • 3SCHWAB I, POHL W, KOYCHEV I. Learning to recommend from positive evidence [ C]//Proc of the International Comference on Intelligent User Interfaces. New York : ACM Press, 2000 : 241-247.
  • 4BOLLACKER K D , LAWRENCE S, GILES C L. CiteSeer: an au- tonomous Web agent for automatic retrieval and identification of interesting publications[ C]//Proe of the 2nd Internalional Conference on Autonomous Agents. New York : ACM Press, 1995 : 116-123.
  • 5MLADENIC D. Machine learning for better Web browsing, AAAI TR SS-00-01 [ R]. Ljubljana: Depe. of Intuigent Systems, J. Stefan Institute, 2000 : 82 - 84.
  • 6EIRINAKI M, VAZIRGIANNIS M, KAPOGIANNIS D. Web path recommendations based on page ranking and Markov models [ C ]//Proc of the 7th Annual ACM International Workshop on Web Infolrnation and Data Management. New York: ACM Press,2005:2-9.
  • 7GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry [ J ]. Communications of the ACM,1992,35(12) :61-70.
  • 8RESNICK P, IACOVOU N, SUSHAK M, et al. GroupLens: an open architecture for collaborative filtering of netnews [ C]//Proc of the 1994 Computer Supported Cooperative Work Conference, New York: ACM, 1994 : 175-186.
  • 9JOACHIMS T, FREITAG D, MITCHELL T. WebWateher: a tour guide for the World Wide Web[ C]//Proc of International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 1997 : 770-777.
  • 10MU Xiang-wei, CHEN Yah, ZHANG Lin. An improved similarity algorithm based on stability degree for item-based collaborative filtering [ C]//Proc of the 2010 International Conference on Computer Design and Application. Qinhuangdao: 1EEE ,2010 :494-498.

共引文献38

同被引文献56

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部