期刊文献+

广义强非线性拟变分不等式组的迭代算法 被引量:2

Iterative Algorithms for a System of Extended General Strongly Nonlinear Quasi-Variational Inequalities
下载PDF
导出
摘要 研究一类新的广义强非线性拟变分不等式组解的存在性及算法.首先建立广义强非线性拟变分不等式组与不动点问题的等价关系.利用这一等价关系讨论广义强非线性拟变分不等式组解的存在性与唯一性.然后给出一个含有误差的投影迭代算法.最后证明了该算法产生的迭代序列收敛到广义强非线性拟变分不等式组的唯一解. In this paper,we introduce and study a new system of extended general strongly nonlinear quasi-variational inequalities.First,we establish the equivalences between this system and fixed point problems. By using these equivalences,we discuss the existence and uniqueness of solution to the system. And then,we define a new projection iterative algorithm with mixed errors for finding the unique solution of the system. Finally,we prove the convergence of the suggested iterative algorithm.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第1期8-14,共7页 Journal of Sichuan Normal University(Natural Science)
基金 教育部科学技术重点项目(212147)
关键词 广义强非线性拟变分不等式组 强单调 LIPSCHITZ条件 投影动态系统 system of quasi-variational inequalities strongly monotone Lipschitz conditions projection dynamical systems
  • 相关文献

参考文献26

  • 1STAMPACCHIA G. Formes bilineaires coercivities sur les ensembles convexes [ J ]. Comptes Rendus de l' Academic des Sciences Serie, 1964,258:4413 - 4416.
  • 2BREZIS H. Operateurs Maximaux Monotones et Semigroupes de Contractions dan les Espaces de Hilbert[ M]. Amsterdam: Noah - Holland, 1973.
  • 3GIANNESSI F, MAUGERI A. Variational Inequalities and Network Equilibrium Problems [ M ]. New York : Plenum Press, 1995.
  • 4VERMA R U. General convergence analysis for two - step projection methods and application to variational problems [ J ]. Appl Math Lett ,2005,18 : 1286 - 1292.
  • 5CHANG S S, LEE H W J, CHAN C K. Generalized system for relaxed eoeoereive variational inequalities in Hilbert spaces[ J]. Appl Math Lett,2007,20:329 - 334.
  • 6HUANG Z Y, NOOR M A. Generalized system for relaxed coeoercive variational inequalities in Hilbert spaces [ J ]. Appl Math Comput ,2007,190:356 - 361.
  • 7NOOR M A, NOOR K I. Projection algorithms for solving a system of general variational inequalities [ J ]. Nonlinear Analysis, 2009,70:2700 - 2706.
  • 8HARKER P T. Generalized nash games and quasivariational inequalities [ J ]. Euro J Oper Research, 1991,54:81 -94.
  • 9PANG J S, FUKUSHIMA M. Quasivariational inequality, generalized nash equilibria, and multileader- follower game [ J ]. Com- putational Management Science ,2005,2:21 - 56.
  • 10YAO J C. The generalized quasi variational inequality problem with applications[ J]. J Math Anal Appl, 1991,158:139 -160.

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部